

Contents

1	Introduction	1
	References	3
2	Basic Characteristics of Electromagnetic Radiation	5
2.1	Radiation Characteristics in the Classical and Quantum Electrodynamics	5
2.2	Polarization Characteristics of Radiation	8
2.3	The Formation Length of Radiation by a Charged Particle	10
2.4	Interference Factor and the Resonance Condition	12
	References	15
3	Undulator Radiation	17
3.1	Moving of Charged Particle in Periodic Magnetic Field	17
3.2	Radiation of Harmonically Oscillating Charge	21
3.3	Characteristics of Undulator Radiation in Dipole Approximation	22
3.4	Undulator Radiation Spectrum in a Weak Sinusoidal Magnetic Field ($K \leq 1$)	25
3.5	Radiation Along an Undulator Axis in a Strong Magnetic Field ($K \geq 1$)	29
3.6	Radiation in a Helical Undulator	32
	References	38
4	Coherent Bremsstrahlung	39
4.1	The Main Characteristics of Bremsstrahlung in the Screened Coulomb Field	39
4.2	The Bases of the Theory of Coherent Bremsstrahlung	50
4.3	Coherent Bremsstrahlung of B-type	62
4.4	Coherent Bremsstrahlung Beams and its Applications	63
	References	71

5	Resonant Transition Radiation	73
5.1	The Basic Characteristics of Transition Radiation	73
5.2	Transition Radiation in the X-ray Range	78
5.3	Spectrum of the Transition Radiation	82
5.4	X-ray Transition Radiation of Ultrarelativistic Particles in Layered Targets	84
5.5	Resonant Transition Radiation in the Layered Targets (Experiment)	92
	References	103
6	Parametric X-ray Radiation	105
6.1	The Parametric X-ray Radiation Process as a Diffraction of Virtual Photons	105
6.2	The Kinematics of the PXR Process	108
6.3	The Angular Distribution of PXR and the Orientation Dependence of the PXR Yield	110
6.4	The Spectral Characteristics and Yield of PXR Photons	116
6.5	Influence of the Beam Divergence and the Crystal Mosaicity on the PXR Characteristics Features	119
6.6	The Linear Polarization of Parametric X-ray Radiation	123
6.7	PXR in a Layered Crystalline Target	127
	References	132
7	Smith–Purcell Radiation	135
7.1	The Smith–Purcell Effect	135
7.2	The Scalar Theory of the Diffraction of the Electron Coulomb Field from a Flat Semi-Transparent Grating	138
7.3	Diffraction of the Coulomb Electron Field at the Optical Grating	140
7.4	Radiation of Induced Surface Currents as a Smith–Purcell Effect	144
7.5	Smith–Purcell Effect as a Resonant Diffraction Radiation	150
7.6	Resonant Diffraction Radiation from Charge Moving Near the Volume Strip Grating	156
7.7	Experimental Studies of Smith–Purcell Radiation	159
	References	164
8	Radiation of Electrons in the Field of Intense Laser Wave	165
8.1	Scattering of a Weak Electromagnetic Wave on a Rest Electron (Non-Relativistic Approximation)	165
8.2	The Motion of Electron in a Field of Intense Electromagnetic Wave	168
8.3	Radiation from Electrons in a Field of the Intense Wave (Classical Consideration)	170

8.4	Scattering of a Weak Electromagnetic Wave on a Moving Electron (the Linear Compton Effect)	180
8.5	Radiation of a Relativistic Electron in a Field of Strong Electromagnetic Wave	189
8.6	Nonlinear Compton Scattering	195
8.7	The Laser-Synchrotron X-ray Source	200
	References	204
9	Conclusion	207
	References	208
	Index	211