CONTENTS

PART I: PRINCIPLES AND METHODS OF FORCE MEASUREMENT

1	INT	RODUCTION TO FORCE MEASUREMENT	3
	1.1	Various Approaches to Force Transduction	3
	1.2	Newton – Measurement Unit of Force	6
	1.3	Mechanical Measurements of Forces & Tribology	8
		Force Transducers Other than Electrical	
	1.5	Terminology: Sensors or Transducers?	13
	1.6	Force Measurement Systems	16
	REF	TERENCES	20
2	ELF	CTRICAL METHODS OF FORCE MEASUREMENT	23
		Energetical Aspects in Force Transduction	
		Examples of Force Measurement in Thermal Processes	
		Typical Requirements for Force Transducers	
		Force Transducers (FTs) Classifications	
		2.4.1 First Attempts of Force Transducers Systematization	
		2.4.2 German FT Classifications	
		2.4.3 Dutch FT Classifications	34
		2.4.4 English FT Classifications	35
	2.5	Nonconventional Types of Force Transducers	37
		2.5.1 Electrodynamic Force Transducers	37
		2.5.2 Galvanomagnetic Force Transducers (Based on Hall Effect)	37
		2.5.3 Acoustic Force Transducers (SAWs)	38
	2.6	An Enlarged Classification of Force Transducers	
	REI	FERENCES	44
3	RES	SISTIVE FORCE TRANSDUCERS	49
-		Resistive Force Transducers Types	
		Potentiometers	
		Pretensioned Wires	
		Strain Gauges	
		Piezoresistive Sensors	
		3.5.1 Silicon Devices	
		3.5.2 Carbon Film Coatings and Carbon Nanotubes (CNTs)	

	3.6	Force Sensing Resistors (FSRs)	62
	3.7	Force Sensing Resistive Networks	65
	REI	FERENCES	68
4	IND	OUCTIVE FORCE TRANSDUCERS	7 3
	4.1	LVDT (Linear Variable Differential Transformer)	7 4
	4.2	Variable Reluctance Transducers	
	4.3	Mutual Inductance Variation Force Transducers	79
	4.4	Inductive Eddy Current Transducer	81
	4.5	Biparametric Inductive Force Transducers	81
		4.5.1 Biparametric LR	81
		4.5.2 Biparametric LC	82
	REI	FERENCES	85
5	CAI	PACITIVE FORCE TRANSDUCERS	87
		Capacitive Force Transducers Classification	
		Capacitive Force Transducers (CFTs) with Plates	
		5.2.1 CFT with Variable Thickness of the Dielectric Pad	
		5.2.2 CFT with Variable Distance between Plates	90
		5.2.3 CFT with Plates Arranged under a Certain Angle	
	5.3	Multiple Plates Capacitive Force Transducers	92
	5.4	Interdigitated and Matrix of Capacitive Sensors	94
		5.4.1 CFT with Interdigitated Electrodes	
		5.4.2 CFT Using a Matrix of Capacitive Sensing Elements	
		Cylindrical Capacitive Force Transducers	
	5.6	Applications Based on Electrostatic Forces	
		5.6.1 Electrostatic Force Balances	100
		5.6.2 Other Applications of Electrostatic Forces for the Measurement	
		of Mechanical Quantities	102
		Electronic Circuits for Capacitive Transducers	103
	REI	TERENCES	105
6	PIE	ZOELECTRIC FORCE TRANSDUCERS (PZFTs)	109
	6.1	Piezoelectric Materials	
		6.1.1 Quartz Crystals	
		6.1.2 Sensors with Organic Polymers	
		6.1.3 Solid State Devices	
	6.2	Unidirectional Piezoelectric Force Transducers	
	6.3	Tridirectional Piezoelectric Force Transducers	
		Piezoelectric Bimorph as Force Transducer	
		Electronic Circuits for Piezo Force Transducers	
	6.6	Complex Applications with Piezoelectric Devices	125
	REF	FERENCES	126

7	ELI	ECTROMAGNETIC FORCE TRANSDUCERS	131
	7.1	Classification	
	7.2	Magnetoresistive Force Transducers	135
	7.3	Force Measurements in Magnetic Field	138
		7.3.1 Resistive Force Transducers in Magnetic Field	139
		7.3.2 Capacitive Force Transducers in Magnetic Field	140
		7.3.3 Pressure Transducers Based on Magnetic Higher-Order Harmo	nic
		Fields	141
	7.4	Electromagnetic Weighing by Force Compensation	142
	7.5	Electromagnetic Devices for Small Forces	144
		7.5.1 Electromagnetic Probes for Micro- and Nano-force	
		Measurements	
		7.5.2 Magnetic Flux Quantum as a Sub-pico-newton Weight	146
		7.5.3 Casimir Forces and Levitation Pressures Measurement	
	RE	FERENCES	149
_		·	
8		ECTRODYNAMIC FORCE TRANSDUCERS	
		Electrodynamic Force Compensation Principle	
		Load Cells with Electrodynamic Feedback	
	8.3		
		8.3.1 Hydrodynamic Gravimetric Balance	
		8.3.2 Electrodynamic Vacuum Microbalance	
	~ 4	8.3.3 Electrodynamic Devices for Small Particles Experiments	
		Micromechanical Testers with Moving Coils	
		Multifunctional Transducers with Moving Coils	
	RE	FERENCES	163
9	МА	GNETOELASTIC FORCE TRANSDUCERS	165
	9.1	The Magnetostrictive Principle	
	9.2		
	9.3	•	
	7.5	9.3.1 Magnetostrictive Strips and Bars	
		9.3.2 Magnetostrictive Amorphous Wires	
	9.4	Frame-Shaped Magnetoelastic Force Transducers	
		Tubular Magnetoelastic Force Transducers	
		Circular Magnetoelastic Force Transducers	
	9.7	Block-Shaped Magnetoelastic Force Transducers	
	9.8	Magnetoelastic Shafts for Torque Transducers	
		Magnetoelastic FTs Electronic Circuitry	
		FERENCES	
	1410	* MATAIN (CAN) ************************************	10.
1(G.	ALVANOMAGNETIC FORCE TRANSDUCERS	185
	10	.1 Hall Effect and Its Applications	186
		2 Force Transducers Based on the Hall Effect	

		10.2.1	Hall Effect in Geotechnical Engineering	189
			Medical Applications with Hall Sensors	
	10.3	Hall De	evices for Other Mechanical Quantities	191
			Displacement and Position Measurements Using Hall	
			Sensors	
			Weighing Based on Hall Devices	
			Pressure and Flow Measurements by Means of Hall Sensors .	
			Shock Measurements Using Hall Devices	194
			Penetration Velocity and Rotational Speed Measured with	
			Hall Sensors	
	10.4		omagnetic FTs in Complex Measurement Chains	196
		10.4.1	Combined Measurands in Galvanomagnetic Force	
			Transducers	
			Triaxial Galvanomagnetic Force Transducers	
			Electromagnetic Principles in Force Measurement	
	REF	ERENC	ES	200
11	X/TDI) A TINIC	G-WIRE FORCE TRANSDUCERS	203
11			ng Wire as Force Measurement Principle	
			s' Structures and Characteristics	
	11.3		nic Circuits for VWTs	
	11.5		Vibrating-Wire Excitation Methods	
			Measuring Circuits for Vibrating-Wire Transducers	
			Digital Weighing Based on Vibrating-Wire Transducers	
			Virtual Musical Instruments Investigated by Means	211
		11.5.4	of VWFTs	212
	11.4	Differe	nt Types of Vibrating-Wire Transducers	
			Applications for Other Physical Quantities	
			Viscometers and Densimeters	
			"Piezometers" (for Underground Water Pressure)	
			Tiltmeters / Inclinometers and Slope Indicators	
	11.6		Progress and Their Extended Utilization	
			ES	
12			R FORCE TRANSDUCERS	
			tor Principle in Force Measurement	
	12.2		als for Resonators and Their Q-Factors	
		12.2.1	Quartz Resonators for Force Transducers	231
			Silicon Resonators for Force Transducers	
	12.3		s Shapes of Resonators	
			Resonating Beams for Force Transducers	235
		12.3.2	Resonating Diaphragms / Membranes for Force / Pressure	
			Transducers	
		12.3.3	Resonating Tubes for Force Transducers	238

CONTENTS XVII

	12.4	Single Beam (Micro)Resonators	238
	12.5		
		12.5.1 Classical Double-Ended Tuning Forks (DETFs)	240
		12.5.2 Modern Solutions for DETF Resonators	242
	12.6	Metallic Triple Beam Resonators (MTBRs)	244
		12.6.1 Force Transducers with MTBRs	244
		12.6.2 Torque Transducers with MTBRs	246
	REF	TERENCES	247
13	ACO	USTIC FORCE TRANSDUCERS	251
		Interdigital Transducers (IDTs)	
	13.2	Acoustic Emission and Waveguides	
		13.2.1 Acoustic Emission Applications	
		13.2.2 Acoustic Waveguides Applications	
	13.3	Ultrasound Force Transducers	
		13.3.1 Industrial Applications of Ultrasound Force Transducers	
		13.3.2 Ultrasound Force Transducers for Food and Farmacology	
		13.3.3 Medical Applications of Ultrasound Force Transducers	
	13.4	Acoustic Radiation Force Transducers	
		13.4.1 Acoustic Radiation Force Transducers in Medicine	261
		13.4.2 Acoustic Radiation Force Transducers in Metrology	262
	13.5	Surface Acoustic Wave (SAW) Transducers	
		13.5.1 SAW Force Transducers	
		13.5.2 SAW Torque Transducers	
		13.5.3 SAW Pressure Transducers	
		13.5.4 SAW Fluidic Transducers	
	13.6	SAW Electronic Circuits	
		ERENCES	
14	GYR	OSCOPIC FORCE TRANSDUCERS	275
	14.1	The Gyroscopic Principle in Force Measurement	
	14.2	Conventional Gyroscopic Force Transducers	
	14.3	Types of Micro-Gyroscopic Force Transducers	
		14.3.1 Inertial Gyroscopes	
		14.3.2 Piezoelectric Gyroscopes	
		14.3.3 Resonator / Vibrating Gyroscopes	
		14.3.4 Acoustic (and SAW) Gyroscopes	
		14.3.5 Coriolis Force Transducers in Medical Applications	
	14.4		
		14.4.1 Fiber Optic Gyroscopes (FOGs)	
		14.4.2 Laser Gyroscopes	
		14.4.3 MOEMS (Micro-Opto-Electro-Mechanical System)	
		Gyroscope	288
	14.5	A Topical Review of Gyroscopes	
		ERENCES	

15	FOR	CE BALANCE TECHNIQUES	293
	15.1	Force Balance Principle Applied to Transducers	294
	15.2	Electromagnetic Force Compensation (EMFC)	297
	15.3	Electrostatic Force Compensation	299
		Optical Devices Based on Force Feedback	
	REF	ERENCES	304
16		ED METHODS IN FORCE MEASUREMENTS	
	16.1	Force Transducers Using Advanced Electronics	308
		Cantilever Beams for Various Force Transducers	
		CNTs for Measuring Mechanical Quantities	
	16.4	Combined Methods of Force Transduction	
		16.4.1 Force Transducers in Medical Instruments	316
		16.4.2 EMAT (Electro-Magnetic Acoustic Transducer) and	210
		Lorentz Force	
		16.4.3 Multitransducer Equipment	
		16.4.4 Force Transducers Involving Optical Techniques	
	REF	ERENCES	324
PA	RT II	: FORCE TRANSDUCERS COMPONENTS	
17	THE	FORCE MEASUREMENT CHAIN	
	17.1		
	17.2		
	17.3		
		Strain Gauges Signal Processing	
		Data Presentation for Force Transducers	
	REF.	ERENCES	345
18		EATSTONE BRIDGE – THE BASIC CIRCUIT FOR STRAIN	
		RCE TRANSDUCERS	
		Wheatstone Bridge – General Presentation	
	18.2	Wheatstone Bridge – Fundamental Properties	
	18.3	j j	
	18.4		
		Different Applications with Measuring Bridges	
		Further Connections for Wheatstone Bridges	
	REF	FERENCES	358
19	STR	AIN GAUGES ELECTRONIC CIRCUITS	
	19.1	Signal Conditioning for Force Transducers	
	19.2	6	
		19.2.1 Pre- and Post-Conditioning	
		19.2.2 High-Gain Signal Conditioning	
		19.2.3 "QuantumX" Universal Conditioner	363

	19.3	Analog-to-Digital Converters	365
		19.3.1 Different Conversions to Frequency	
		19.3.2 Resistance-to-Time Converter	365
		19.3.3 Sigma-Delta Converter	366
	19.4	Bridge Oscillators	
		19.4.1 Wien Bridge Based Oscillator	
		19.4.2 Wheatstone Bridge Based Oscillator	
	19.5	AC Generators	
		19.5.1 Sine Wave Generator	
		19.5.2 Saw-Tooth Wave Generator	
		19.5.3 Rectangular Wave Generator	
	19.6	Strain Gauged Force Transducers Connected to PC	
		19.6.1 Direct Resistance Change Measurement	
		19.6.2 Strain Gauge Bridge Signal Processing	
	REF	ERENCES	373
20	OT A	COMPLETATION OF BY A COMPLETE DAMPAINE	255
20		SSIFICATION OF ELASTIC ELEMENTS	
		Elastic Elements Loading Modes	
		Examples of Elastic Elements Classifications	
		ERENCES	
	KEF.	ERENCES	30/
21	STR	ETCHED / COMPRESSED COLUMNS	389
		Classical Columns	
	21.2	Optimized Columns	394
		Increasing Sensitivity for Columnar Transducers	
		Complex Structures Composed by Bars / Columns	
		Dynamic Testing for Cylindrical Transducers	
		ERENCES	

22		ETCHED / COMPRESSED TUBES	
	21.1	Classical Tubes	
	22.2		
		Profiled Tubes	
		Tubes with Holes or Slots	
		Tubular Structures under Complex Loading	
	REF	ERENCES	411
23	BEN	T LAMELLA (CANTILEVER BEAMS)	415
	23.1	Various Applications with Cantilever Beams	
	23.2	Cantilever Beams for Lower Forces	
	23.3	(Bio)Chemical Cantilevers	424
	23.4		
		Cantilever Beams in Multicomponent FTs	
		ERENCES	

24	BENT AND/OR TORSION SHAFTS	437
	24.1 Bending of Cantilever Tube or Cylinder	437
	24.2 Rotating Shafts	439
	24.3 Complex Loaded Shafts	441
	REFERENCES	443
25	MIDDLE BENT BARS WITH FIXED ENDS	445
	25.1 Examples of Middle Bent Bars with Fixed Ends	
	25.2 Slotted Structures for Middle Bent Bars with Fixed Ends	
	25.3 Dynamic Applications of Double Ended Beams	
	25.4 Various Models of Four-Spoke Wheels	
	REFERENCES	
26	SHEARING STRAINED ELASTIC ELEMENTS	457
20	26.1 'I'-Profiles Subjected to Shearing	
	26.2 Load Measuring Pins / Bolts	
	26.3 Hollow Discs / Wheels	
	26.4 S (Z) Shaped Elastic Elements	
	26.5 Helix Load Cells	
	REFERENCES	
77	BENT YOKES AND FRAMES	460
27		
	27.1 Various Shapes of Bent Yokes and Frames27.2 Force–Measuring Clamps	
	REFERENCES	4/5
28	BENT RINGS AND "GLASSES"	477
	28.1 Various Shapes of Bent Rings	477
	28.1.1 Circular Rings	477
	28.1.2 "Square" Rings	
	28.1.3 Hexagonal Rings	
	28.1.4 Octagonal Rings	
	28.1.5 Other Shapes of Bent Rings	
	28.2 "Glasses"-Shaped Elastic Structures	
	28.3 Multiple "Glasses"-Shaped Elastic Elements	490
	REFERENCES	
29	BENT MEMBRANES	495
	29.1 Various Types of Bent Membranes	
	29.2 Circular Membranes	500
	29.3 Square Membranes	
	29.4 Membranes with Various Shapes of Apertures	509
	29.5 Other Shapes of Membranes	511
	REFERENCES	

CONTENTS XXI

30	COM	IPLEX LOADED TORUS	517
	30.1	Torus as Elastic Element for Force Transducers	517
	30.2	Toroidal Elastic Elements in Special Applications	520
	REF	ERENCES	522
31	AXIS	SYMMETRIC ELASTIC ELEMENTS	523
-	31.1	Various Axisymmetric EEs for Force Transducers	
	31.2	Axisymmetrical EEs for Very Large Force Transducers	
		N-Shaped Axisymmetric Elastic Elements	
		ERENCES	
32	VOL	UMETRIC ELASTIC ELEMENTS	539
	32.1	Spheres	539
	32.2	•	
		32.2.1 Full Cubes	542
		32.2.2 Cubic Blocks with Slots	543
	32.3	Complex Bodies with Oblique Slots	
	REF	ERENCES	548
33		IPLEX, COMPOSED AND COMBINED ELASTIC	
		UCTURES	
	33.1	Complex Elastic Structures	
		33.1.1 Plane Complex Structures	
		33.1.2 Spatial Complex Structures	
		Composed Elastic Structures	
	33.3	Combined Elastic Structures	
		33.3.1 Plane Combinations of Elastic Elements	
		33.3.2 Axisymmetric Combinations of Elastic Elements	
		33.3.3 Spatial Combinations of Elastic Elements	
	REF	ERENCES	562
34	ELA	STIC ELEMENTS SELECTION CRITERIA	
	34.1	Elastic Elements (EEs) Evaluation Criteria	
		Elastic Elements Comparative Analysis	
	34.3	EE Selection for Specific Applications	
		34.3.1 From Single- to Multi-component Force Transducers	569
		34.3.2 Force Transducers in Mechatronics	
		34.3.3 EEs for Very Large Forces	
		Elastic Elements Automatic Selection	
	REF	ERENCES	574

35	DIG	ITAL AND INTELLIGENT FORCE TRANSDUCERS	577
	35.1	Evolution from Analog to Digital	577
		Automatic Recognition of Force Transducers	
		Force Transducers in Dynamic Regime	
		Intelligent (Smart) Force Transducers	
		Further Prospects: Materials, Technologies, Ideas	
		35.5.1 Smart Materials and Structures	
		35.5.2 Intelligent Design and Smart Technology	
		35.5.3 Neuro-Fuzzy Concepts	
	35.6	Updated Force Transducers + Data Communication	
		35.6.1 Dual Output Force Transducers	
		35.6.2 Data Display and Communication	
	REF	ERENCES	
ΑN		1. Rules for Strain Gauges Placement on the Elastic Elen Force Transducers	nents of
AN	NEX 2	2. The Newton's Apple Tree in Korea	595
INI)FY		597