Contents

Part I Physics of High Speed Lasers

1	Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity					
	1.1	The "Local" Rate Equations	3			
	1.2	Spatially Averaged Rate Equations and their Range of Validity				
2	Basi	c "Small-Signal" Modulation Response	11			
3	Disto	Distortions in Direct Modulation of Laser Diodes				
	3.1	Perturbation Analytic Prediction of Fundamental				
		Distortions in Directly Modulated Laser Diodes	19			
	3.2	Intermodulation Distortion				
4		ct Modulation Beyond X-Band by Operation				
	at H	igh Optical Power Density	29			
5		rovement in Direct-Modulation Speed by Enhanced				
	Diffe	erential Optical Gain and Quantum Confinement	35			
	5.1	Demonstration of the Explicit Dependence				
		of Direct-Modulation Bandwidth on Differential Gain				
		by Low-Temperature Operation	35			
		5.1.1 Direct-Modulation Results				
		5.1.2 Parasitic-Free Photo Mixing Modulation Experiment	38			
	5.2	Attainment of High-Modulation Bandwidths				
		Through Quantum-Confined Materials	4(
6	Dyna	amic Longitudinal Mode Spectral Behavior				
	of La	aser Diodes Under Direct High-Frequency Modulation	45			
	6.1	Introduction				
	6.2	Experimental Observations				
	6.3	•				
	64					

xxi

xxii Contents

	6.5	Solution to the Many-Mode Problem	55			
		6.5.1 An Approximate Analytic Solution	50			
		of $\alpha_0 \sum_i \frac{1}{1+ci^2} = 1$	28			
	6.6	Lasing Spectrum Under CW High-Frequency				
	Microwave Modulation					
	6.7	Dynamic Wavelength "Chirping" Under Direct Modulation				
	6.8	Summary and Conclusions	62			
7	Sign	al-Induced Noise in Fiber Links	65			
	7.1	Introduction				
	7.2	Measurements				
	7.3	Analysis and Comparison With Measurements	72			
		7.3.1 Mode-Partition Noise and Noise Transposition				
		in Fiber Links Using Multimode Lasers	73			
		7.3.2 Transposed Interferometric Noise in Fiber				
		Links Using Single-Frequency Lasers	78			
	7.4	Mode-Partition Noise in an Almost Single-Mode Laser				
	7.5	Conclusion	83			
8		ration of Resonant Modulation	87			
9		nant Modulation of Monolithic Laser Diodes				
		illimeter-Wave Frequencies				
	9.1	Active Mode-Locking				
	9.2	Passive Mode-Locking	97			
10		Performance of Resonant Modulation				
		e Millimeter-Wave Frequency Range:				
	Mult	i-Subcarrier Modulation	101			
11	Reso	nant Modulation of Single-Contact Lasers	107			
Pa	rt III	Fiber Transmission Effects, System Perspectives				
		vative Approach to Broadband mm-Wave Subcarrier				
Op	tical S	gnals				
12		Chromatic Dispersion Effects of Broadband				
	mm-	mm-Wave Subcarrier Optical Signals and Its Elimination11				
	12.1	Effects on Multichannel Digital Millimeter-Wave Transmission	115			
	12.2	Elimination of Fiber Chromatic Dispersion Penalty				
	12.2	Elimination of Fiber Chromatic Dispersion Penalty on 1,550 nm Millimeter-Wave Optical Transmission	120			

Contents xxiii

13	Transmission Demonstrations					
	13.1		n Transmission of Digitally Modulated			
		28-GHz	Subcarriers Over 77 km of Non-Dispersion			
		Shifted	Fiber	125		
	13.2	39 GHz	Fiber-Wireless Transmission of Broadband			
		Multi-C	hannel Compressed Digital Video	130		
14	Application of Linear Fiber Links to Wireless Signal					
17			A High-level System Perspective	135		
15			s in Baseband Fiber Optic Transmission			
	by Su		ion of High-Frequency Microwave Modulation			
	15.1	Introduc	ction	141		
	15.2	Interfere	ometric Noise	142		
		15.2.1	Superimposed High-Frequency Modulation:			
			External Phase Modulation	144		
		15.2.2	Directly Modulated Laser Diode	147		
		15.2.3	Superimposed Modulation With Band-Pass			
			Gaussian Noise			
	15.3		ode Fiber: Modal Noise			
	15.4	Conclus	sion	153		
16	Milli	meter.W:	ave Signal Transport Over Optical			
10	Fiber Links by "Feed-Forward Modulation"					
	16.1		e of "Feed-Forward Modulation" for mm-Wave			
	10.1	Signal T	Fransport Over an Optical Carrier	155		
	16.2		stration of "Feed-Forward Modulation"			
	10.2		cal Transmission of Digitally Modulated			
			ve Subcarrier	161		
17	ъ.					
17	_		anning for Minimal Intermodulation Distortion			
	17.1	Introduc	ction	103		
	17.2	_	nms for Single-Link Frequency Planning			
		17.2.1	Babcock Spacing			
	15.0	17.2.2	+			
	17.3		ink Frequency Planning Algorithm	170		
		17.3.1	Modified Okinaka Algorithm for Multi-Link			
			Frequency Planning	1/1		
		17.3.2	Measurements			
	17.4	Discussi	ion and Conclusion	176		
18	Erbit	ım Fiber	Amplifiers in Linear			
	Light		ansmission			
	18.1		ction			
	18.2	Distortio	on Characteristics			
		18.2.1	EDFA Distortion Model			
		18.2.2	Experimental Results	181		

xxiv Contents

		18.2.3 Comparisons Between Distortions in Laser	
		Diode with EDFA	
	18.3	CNR Optimization	
		18.3.1 Operation Point	
		18.3.2 Fan-Out and Fiber Loss	
		18.3.3 CNR Versus Length of EDFA	
	18.4	Discussions and Conclusions	195
Par	t IV	Appendices	
A	Note	s on RF Link Metrics	199
	A.1	Notes on Relation Between Distortion Products, Noise,	
		Spur (Spurious)-Free Dynamic Range (SFDR)	199
	A.2	Notes on Intermodulation Distortion in a Multichannel	
		Subcarrier Transmission System: CTB and CSO	201
		A.2.1 Composite Triple Beat (CTB)	201
		A.2.2 Composite Second-Order Intermodulation	
		(CSO) Distortion	203
	A.3	Graphical Illustrations of RF Signals	204
В	Ultra	ahigh Frequency Photodiodes and Receivers	207
	B.1	Ultrahigh Speed PIN Photodiodes	207
	B.2	Resonant Receivers	211
C	High	Frequency Optical Modulators	213
	C.1	Mach Zehnder Interferometric Optical Modulator	
	C.2	Electroabsorption Optical Modulator	
D	Mod	ulation Response of Superluminescent Lasers	219
	D.1	Introduction	
	D.2	The Small Signal Superluminescent Equations	
		and Numerical Results	220
	D.3	Effect of a Small but Finite Mirror Reflectivity	224
E	Broa	dband Microwave Fiber-Optic Links With RF Phase	
		rol for Phased-Array Antennas	229
F	Smal	ll Signal Traveling Wave Rate Equations	
		rbium-Doped Fiber Amplifiers	235
G	Appl	ications of High Frequency Linear Fiber-Optic Links	
			237
	G.1	Electronic Counter Measure: Aerial Towed Fiber-Optic Decoy	
	G.2	Nuclear Test Diagnostic Instrumentation	
Dafa	Para	oc.	241
VCI	er chice	es	241
Inde	ex		253