Contents

Theory 1 Part I

1	Linear Response Theory Applications to IR Spectra of
	H-Bonded Cyclic Dimers Taking into Account the Surrounding.
	Updating Contributions Involving Davydov Coupling, Fermi
	Resonances and Electrical Anharmonicity 3
	Paul Blaise and Olivier Henri-Rousseau
1.1	Introduction 3
1.2	Dimer Strong Anharmonic Coupling Theory 3
1.2.1	Different Theoretical Situations 3
1.2.1.1	Strong Anharmonic Coupling Within Adiabatic Approximation For
	Monomer 3
1.2.1.2	Introduction of Fermi Resonances 6
1.2.1.3	H-Bonded Centrosymmetric Dimer 8
1.2.1.4	Dimer Involving Damping, Davydov Coupling, and Fermi
	Resonances 12
1.2.2	The Spectral Density 13
1.3	Comparison with Experiments 14
1.3.1	Carboxylic Acid Dimers Ignoring Fermi Resonances 14
1.3.1.1	Gaseous and Liquid Acetic Acid Dimers 14
1.3.1.2	Gaseous Acrylic and Propynoic Acids 15
1.3.2	Carboxylic Acids Taking Into Account Fermi Resonances 16
1.3.2.1	Crystalline Adipic Acid 16
1.3.2.2	Crystalline Polarized and Unpolarized Glutaric Acid Taking Into
	Account Fermi Resonances 17
1.3.2.3	Crystalline Thiopheneacetic Acid and Thiopheneacrylic Acids 17
1.3.2.4	1.2-Naphtylacetic Acid (2-NA) Crystals 20
1.3.2.5	Crystalline Aspirin Dimers Involving Slow Mode Morse Potential 23
1.3.2.6	Phthalic and Terephthalic Acid Crystals 25
1.3.2.7	Liquid Formic Acid Mixing of Monomer and Dimer 27

vi	Contents	
	1.3.2.8	Crystalline Furoic Acid Dimer with Slow Mode Morse Potential and Fermi Resonances 28
	1.3.2.9	Other Kinds of H-Bonded Compounds 31
	1.3.2.10	Phosphinic Acid Dimer 31
	1.3.2.11	Monomer of $(CH_3)_2O\cdots HCl$ 33
	1.4	Conclusion 36
	1.5	Acknowledgment 36
		References 36
	2	Dynamic Interactions Shaping Vibrational Spectra of
		Hydrogen-Bonded Systems 39
		Marek J. Wójcik, Mateusz Brela, Łukasz Boda, Marek Boczar, and Takahito Nakajima
	2.1	Introduction 39
	2.2	Theoretical Model of the Infrared Spectra of Gaseous $(CH_3)_2$ O-HCl and $(CH_3)_2$ O-HF Complexes 42
	2.3	Simulation of the Cl-H(D) and F-H Stretching Bands in the
	2.3	DME-H(D)Cl and DME-HF Complexes 45
	2.4	Methodology of Molecular Dynamics 47
	2.5	Spectroscopic Study of Uracil, 1-Methyluracil, and
	2.5	1-Methyl-4-thiouracil 49
	2.6	Hydrogen Bond Interaction Dynamics in the Adenine and Thymine
	2.0	Crystals 50
	2.7	Guanine and Cytosine Crystals 51
	2.8	Spectroscopic Signature for Ferroelectric Ice 52
	2.9	Conclusions 55
	2.9	Acknowledgment 56
		References 56
	3	Trajectory On-the-Fly Molecular Dynamics Approach to
		Tunneling Splitting in the Electronic Ground and Excited
		States 67
		Tetsuya Taketsugu and Yusuke Ootani
	3.1	Introduction 67
	3.2	Semiclassical Tunneling Approach 69
	3.3	Results and Discussion 71
	3.3.1	Umbrella Inversion of Ammonia 72
	3.3.2	Intramolecular Hydrogen Transfer in Malonaldehyde 73
	3.3.3	Excited State Intramolecular Hydrogen Transfer in Tropolone 75
	3.4	Conclusions 79
	5.1	Acknowledgments 79
		References 80

Part II Spectroscopy 83

4	Spectroscopic Signatures of Low-Barrier Hydrogen Bonding in
	Neutral Species 85
	Lidor Foguel, Zachary N. Vealey, and Patrick H. Vaccaro
4.1	Introduction 85
4.2	Spectroscopic Metrics for Hydrogen Bonding 87
4.2.1	Continuum of Hydrogen Bonding 87
4.2.2	Relationship to Tunneling 92
4.2.3	Ground-State Properties of Model Systems 93
4.2.4	Excited-State Spectroscopy of 6-Hydroxy-2-Formylfulvene 98
4.2.5	Ground-State Spectroscopy of 6-Hydroxy-2-Formylfulvene 102
4.2.6	Excited-State Properties of Model Systems 105
4.3	Concluding Remarks 108
	Acknowledgments 109
	References 109
_	
5	Hydrogen-Bonding Interactions Using Excess
	Spectroscopy 123
	Yaqian Wang and Zhiwu Yu
5.1	Introduction of Hydrogen Bond 123
5.1.1	Definition of Hydrogen Bond 123
5.1.2	The Criteria of the Existence of Hydrogen Bonds 124
5.1.3	The Strength of Hydrogen Bonds 125
5.2	Theory of Excess spectroscopy 126
5.3	Studies of Hydrogen Bonds by Excess IR 129
5.3.1	Classical Hydrogen Bonds 129
5.3.2	Charge Assisted Hydrogen Bonds 131
5.3.3	Cooperative Resonance-Assisted Hydrogen Bonds 134
5.3.4	Weak/Moderate Hydrogen Bonds 138
	References 142
6	Intramolecular Hydrogen Bonding in Porphyrin Isomers 145
-	Jacek Waluk
6.1	Introduction 145
6.2	H-Bond Characteristics 146
6.2.1	Porphine (1) 147
6.2.2	Porphycene (2) 148
6.2.3	Hemiporphycene (3) 150
6.2.4	Corrphycene (4) 152
6.2.5	Isoporphycene (5) 154
6.2.6	Porphyrin-(2.2.0.0) (6) 156

viii	Contents	
	6.2.7	Porphyrin-(3.1.0.0) (7) 157
	6.2.8	Porphyrin-(4.0.0.0) (8) 158
	6.2.9	Inverted/Confused Porphyrin (9) 162
	6.2.10	Neo-confused Porphyrin (10) 164
	6.3	Correlations Between Geometry and HB Strength 165
	6.4	Parameters That Can Describe the HB Strength 167
	6.5	Tautomerization Mechanisms 168
	6.6	Summary 169
		Acknowledgments 170
		References 170
	7	Isotope Effects in Hydrogen Bond Research 173
		Poul Erik Hansen
	7.1	Introduction 173
	7.2	Hydrogen Bond Potentials 173
	7.3	Calculations 175
	7.4	Hydrogen Bond Types 176
	7.5	Deuterium Isotope Effects on Chemical Shifts 176
	7.6	Intramolecular Hydrogen Bonds 177
	7.6.1	Two-Bond Deuterium Isotope Effects on ¹³ C Chemical Shifts 178
	7.6.2	Long-Range Isotope Effects 184
	7.6.3	One-Bond Deuterium Isotope Effects on ¹⁵ N Chemical Shifts in
		Solution 185
	7.7	Biological Systems 185
	7.7.1	Proteins 185
	7.7.2	Deuterium Isotope Effects on ¹ H Chemical Shifts 187
	7.8	Intermolecular Hydrogen Bonds 187
	7.9	Primary Isotope Effects 189
	7.10	Isotope Effects and Acidity 191
	7.10.1	Isotope Effects to Determine Protonation States 191
	7.11	Solvent Isotope Effects and Exchange Rates 192
	7.12	Exchange in the Solid-State 192
	7.13	Hydrogen Bond Energies 193
	7.14	Tautomerism 194 Solid-State NMR 197
	7.15	
	7.15.1	Deuterium Isotope Effects on ¹⁵ N Chemical Shifts 199 Conclusions 202
	7.16	References 203
	8	Intramolecular Hydrogen Bonding: Shaping Conformers' Structure and Stability 213 Gulce O. Ildiz and Rui Fausto

8.1

Introduction 213

8.2	The Halogen-Substituted Acetic Acids CF ₃ COOH, CCl ₃ COOH, and CBr ₃ OOH: Implications of IMHB on Structure and Conformers' Stabilities 215
8.3	The Significance of IMHB in the <i>ortho</i> Chloro- and Fluoro-Substituted Benzoic Acids 219
8.4	IMHB in Thiotropolone: Sculpturing the Bidirectional Infrared-Induced Bond-Breaking/Bond-Forming Tautomerization 225
8.5	Conclusion 228 Acknowledgments 229 References 229
9	Hydrogen Bonding from Perspective of Overtones and Combination Modes: Near-Infrared Spectroscopic Study 233 Mirosław A. Czarnecki, Yusuke Morisawa, and Yukihiro Ozaki
9.1	Introduction 233
9.2	Investigation of Hydrogen Bonding of Water by NIR Spectroscopy 235
9.3	The Chain Length Effect on the Degree of Self-association of 1-Alcohols 237
9.4	Combined NIR and Dielectric Study on Association of 1-Hexanol in n-Hexane 240
9.5	NIR Studies of Microheterogeneity in Alcohol/Alcohol and Alcohol/Alkane Binary Mixtures 241
9.6	Overtones of <i>v</i> C≡N Vibration as a Probe of Molecular Structure of Nitriles 244
9.7	Weak Hydrogen Bond in Poly(3-Hydroxybutyrate) (PHB) Studied by NIR Spectroscopy 246
9.8	Studies of Hydrogen Bonding By Use of Higher Overtones 249
9.9	Comparison of Hydrogen Bonding Effects and Solvent Effects on Wave numbers and Intensities of the Fundamental and First Overtone of the N-H Stretching Mode of Pyrrole Studied By NIR/IR Spectroscopy and One-Dimensional Vibrational Schrödinger Equation Approach 252
9.10	Summary 256 Acknowledgments 257 References 257
10	Direct Observation and Kinetic Mapping of Point-to-Point Proton Transfer of a Hydroxy-Photoacid to Multiple
	(Competing) Intramolecular Protonation Sites 261 Dina Pines, Dan Eliovich, Daniel Aminov, Mark Sigalov, Dan Huppert, and
10.7	Ehud Pines
10.1	Introduction 261
10.2	From Intermolecular Proton Transfer to Solvent to Intramolecular Point-to-Point Transfer in 1:1 Hydrogen-Bonding Complexes of Water with Bifunctional OH Photoacids 270

Contents	
10.3	Water Is Able to Donate and Accept an H-bond as Demonstrated by IR Absorption in 1:1 Water–(Acid or Base) Complexes 273
10.4	Proton Transfer Along with Water Bridges in Acetonitrile (ACN)
	Spanning the Distance Between an Acidic and a Basic Side Groups of Bifunctional Photoacids 274
10.5	Time-Resolved Fluorescence Measurements of Proton Transfer along with Water Bridges 277
10.6	Isotope D/H Effect 283
10.7	Insights into the Mechanism of Proton Transfer Through One-Water
	Bridge in Bifunctional 2-Naphthols 285
10.8	Summary 288
	Acknowledgments 289
	References 289
11	Spectroscopic Determination of Hydrogen Bond
	Energies 293
	Mausumi Goswami and Elangannan Arunan
11.1	Introduction 293
11.2	Binding Energy Measurement Involving Infrared (IR) Excitation 296
11.2.1	Measurement of the Dissociation Energy of H-Bonded Complexes
	Through Vibrational Pre-dissociation Dynamics via Infrared Excitation 296
11.2.1.1	Optothermal Bolometric Determination 297
11.2.1.2	Velocity Map Imaging 299
11.2.2	Determination of Gibbs Free Energy of H-Bonded Complex Formation
11.2.2	By Infrared Spectroscopy 307
11.2.3	Measurement of Binding Energy of H-Bonded Complexes by IR-UV
	Double Resonance Spectroscopy 314
11.3	Determination of the Binding Energy of H-Bonded Complexes Using
	Spectroscopic Techniques Involving Electronic Excitation 316
11.3.1	Determination of H-Bond Dissociation Energy Through Multiphoton
	Ionization Techniques 316
11.3.2	Determination of the Dissociation Energy of Cationic H-Bonded
	Complexes Through Birge–Sponer Extrapolation 325
11.3.3	Determination of the Dissociation Energy of H-Bonded Complexes Using
	SEP-REMPI Technique 328
11.4	Estimation of the Well Depth of H-Bonding Interactions Through
	Microwave Spectroscopy 332
11.5	Conclusion 335
	References 336
12	IR and NMR Spectral Diagnostics of Hydrogen Bond Energy
14	IN AIIU INIIN JUELLIAL DIAUIIUSLILS VI NYUIVYEII DVIIU EIIEIYY

and Geometry 345

Introduction 345

12.1

Peter M. Tolstoy and Elena Yu. Tupikina

12.1.1	Solving the Reverse Spectroscopic Problem 345
12.1.2	Spectral Markers for Proton Transfer and H-Bond Length 346
12.2	Spectral Characterization of Hydrogen Bond Geometry 348
12.2.1	Description of Hydrogen Bond Geometry 348
12.2.2	Averaging of NMR Parameters and Proton Tautomerism 350
12.2.3	NMR Hydrogen Bond Correlations 353
12.2.3.1	OHO Bonds – ¹ H Chemical Shifts 353
12.2.3.2	OHO Bonds – ¹³ C and ³¹ P NMR Chemical Shifts 356
12.2.3.3	OHN Bonds 360
12.2.3.4	NHN Bonds 363
12.2.3.5	FHF, FHN, and FHO Bonds 365
12.2.3.6	Vicinal H/D Isotope Effects 369
12.2.4	IR Hydrogen Bond Correlations 371
12.2.4.1	Proton Donor Stretching Vibration 371
12.2.4.2	Proton Donor Deformational Vibrations 374
12.2.4.3	Carbonyl Stretching Vibration 375
12.3	Spectral Markers for Hydrogen Bond Energy 375
12.3.1	Defining Hydrogen Bond Energy 375
12.3.2	NMR Characterization of H-Bond Energy 377
12.3.3	IR Characterization of H-Bond Energy 378
12.3.3.1	Proton Donor Stretching Band Shift 378
12.3.3.2	Proton Donor Stretching Band Intensity 384
12.3.3.3	Proton Donor Deformational Vibrations 385
12.3.3.4	Low-Frequency Hydrogen Bond Stretching Frequency 385
12.3.3.5	Stretching Vibrations' Force Constants 386
12.3.3.6	Carbonyl Stretching Vibration 387
	References 387
13	ATR-Far-Ultraviolet Spectroscopy Holds Unique Advantages
	for Investigating Hydrogen Bondings and Intermolecular
	Interactions of Molecules in Condensed Phase 409
	Yusuke Morisawa, Takeyoshi Goto, Nami Ueno, and Yukihiro Ozaki
13.1	Introduction 409
13.2	Characteristics and Advantages of FUV Spectroscopy for the Studies of
	Liquids and Solids 410
13.3	FUV Spectroscopic Studies of Hydrogen Bonds and Hydration Structures
	of Electrolyte Aqueous Solutions 411
13.4	Quantum Chemical Calculations of the $\widetilde{A} \leftarrow \widetilde{X}$ Transition of Hydrated
	Group I Cations 412
13.5	Hydrogen Bonding States of Interfacial Water Adsorbed on an Alumina
	Surface Studied by Variable Angle-ATR-FUV Spectroscopy 416
13.6	ATR-FUV and Quantum Chemical Calculation Studies of Hydrogen
	Bondings in Amides 418
13.7	ATR-FUV and Quantum Chemical Calculation Studies of Hydrogen
	Bondings in Nylons 422

xii	Contents	
	13.8	An ATR-FUV Study for Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li ⁺) 424
	13.9	Summary and Perspective 427 References 429
	14	Water-Hydrogen-Bond Network and Hydrophobic Effect 435 Barbara Zupančič and Jože Grdadolnik Symbols and Abbreviations 435
	14.1	Introduction 436
	14.2	Bulk Water 438
	14.2.1	Temperature-Dependent Infrared Spectra of Bulk Water 439
	14.3	Water Near Fully Hydrophobic Solutes 442
	14.3.1	Verification of the Experimental Procedure 443
	14.3.1.1	
	14.3.1.2	Clathrate Formations 448
	14.3.2	Pure Hydrophobic Solutes in Water Solution 449
	14.3.3	MD Simulations of Purely Hydrophobic Solute in Water and the Origin of Strengthened Water-Water-Hydrogen Bonds Near Methane Molecule 453
	14.4	IR Spectroscopy of the Water Hydrogen Bonding in the Alcohol–Water Systems 455
	14.4.1	Importance of Alcohol–Water Systems 455
	14.4.2	IR Spectroscopy in the Study of Alcohol–Water Systems 455
	14.4.2.1	Overview 455
	14.4.2.2	Spectral Decomposition and Probes for Characterization 456
	14.4.2.3	Influence of Alcohol Concentration and Temperature 464
	14.5	Epilogue 470
		Acknowledgments 470
		References 471
	15	Hydrogen Bond Chains in Foldamers and Dynamic Foldamers 479 David TJ. Morris and Jonathan Clayden
	15.1	Hydrogen-Bonded Foldamers 479
	15.2	Hydrogen-Bonded Dynamic Foldamers 488
	15.3	Reversible Hydrogen-Bond Directionality in Dynamic Foldamers 501
	15.4	Cyclic Hydrogen Bond Chains 508 References 514