Contents

Preface ---- XV

About the authors —— XXI

Part A: Multiphase reactors: chemical reaction engineering

1	Introduction —— 3
1.1	Book introduction —— 3
1.2	A reaction engineer meets an electronic engineer —— 5
1.3	Levenspiel's genius Problem 1.1 —— 5
1.4	A short history of chemical reaction engineering —— 10
1.4.1	Introduction —— 10
1.4.2	Birth of chemical reaction engineering —— 10
1.4.3	Founding fathers of CRE —— 12
1.4.4	CRE as a language game —— 13
1.4.5	Dimensionless numbers in CRE: the persons behind the number —— 13
1.5	Reaction engineering as introduction to process design —— 17
1.6	Exercises —— 17
1.7	Takeaway learning points —— 18
	References —— 18
2	Overview of multiphase reactors —— 20
2.1	Introduction —— 20
2.2	Two-phase G-S reactors —— 22
2.2.1	Fixed bed reactors —— 22
2.2.2	Gas–solid fluid bed reactors —— 24
2.3	Two-phase G-L and L-L reactors —— 31
2.3.1	Gas–liquid bubble column reactors —— 31
2.3.2	Continuous and batchwise operation —— 33
2.3.3	Mechanically stirred gas–liquid reactors —— 34
2.3.4	Gas-liquid spray tower reactor and Venturi washer —— 35
2.3.5	Gas-liquid packed bed reactor —— 37
2.3.6	Two-phase L-L reactors —— 38
2.4	Three-phase gas-liquid-solid reactors —— 40
2.4.1	Slurry reactors (liquid is continuous phase) —— 40
2.4.2	Trickle-bed three-phase reactor with gas as the continuous phase —— 41
2.5	Reactors with heat control —— 43
2.5.1	Introduction of reactors with heat control —— 43
2.5.2	Adiabatic heat control —— 44

VI — Contents

2.5.3	Multitubular fixed bed reactor —— 44
2.5.4	Wall (jacket) heat exchange —— 45
2.5.5	Heat transfer by evaporation and a condenser —— 45
2.5.6	Heat transfer by coils inside the reactor —— 45
2.5.7	Microwaves heating —— 45
2.5.8	Electrical heating —— 45
2.6	Exercises —— 46
2.6.1	Industrial exercise 1: reactor types for PVC depolymerization start-up
	company —— 46
2.6.2	Industrial exercise 2: reactor type options for precipitation
	reaction —— 46
2.7	Takeaway learning points —— 47
	References —— 47

Part B: Fundamentals

3	Scale-independent basics relevant for all reactors —— 51
3.1	Reaction stoichiometry and kinetics —— 51
3.1.1	Introduction —— 51
3.1.2	Reaction stoichiometry —— 51
3.1.3	Definition of reaction rate and kinetics —— 53
3.1.4	Reaction rate equations —— 55
3.1.5	Experimental kinetics determination —— 59
3.2	Reactor performance definitions —— 60
3.2.1	Process and reactor boundaries —— 60
3.2.2	Reactor conversion —— 61
3.2.3	Integral versus differential reactor selectivity —— 62
3.2.4	Reactor production capacity —— 64
3.2.5	Process conversion and yield —— 64
3.2.6	Definitions of terms: space velocity, GHSV, WHSV, LHSV —— 65
3.2.7	Residence time and space time —— 67
3.2.8	Limiting reactant —— 67
3.3	Physical properties —— 68
3.3.1	Reaction medium density modeling —— 68
3.3.2	Physical transport properties —— 69
3.4	Reaction enthalpy —— 69
3.5	Reaction runaway behavior —— 70
3.5.1	Example from Jan's experience —— 71

3.6	Exercises — 72
3.7	Takeaway learning points —— 73
	References —— 73
	List of symbols —— 74
4	Residence time distribution and mixing theory —— 75
4.1	Residence time distribution theory —— 75
4.2	The plug flow reactor concept: PFR —— 78
4.3	The perfectly backmixed reactor: CSTR or CISTR —— 79
4.4	Intermediate macromixing —— 81
4.4.1	Tanks-in-series concept —— 81
4.4.2	Axial dispersion concept —— 82
4.5	Residence time distribution effects on conversion/selectivity —— 84
4.6	Micromixing, earliness of mixing and segregation —— 88
4.6.1	Earliness of mixing —— 89
4.6.2	Degree of segregation —— 91
4.6.3	Takeaway messages: macro- and micromixing —— 93
4.6.4	Application of RTD theory to ideal reactor type selection —— 94
4.7	RTD of real reactors —— 94
4.7.1	RTD of two- and three-phase fixed bed reactors —— 94
4.7.2	Residence time distribution G-L bubble columns —— 98
4.7.3	Bubbling fluid bed residence time distributions —— 100
4.7.4	Residence time distribution G-L-S bubble columns and fluid beds —— 101
4.8	Exercises —— 102
4.8.1	Industrial exercise 1: RTD of a new reactor for a new process —— 102
4.8.2	Industrial exercise 2: fresh coconut drying in a fluid bed —— 103
4.8.3	Industrial exercise 3: catalyst deactivation in a three-phase slurry
	reactor —— 105
4.9	Takeaway learning points —— 107
	References —— 107
5	Inter- and intraphase mass and heat transfer —— 109
5.1	Introduction to mass transfer —— 109
5.1.1	Mass transfer from gas phase to liquid phase to porous solid
	phase —— 110
5.2	Concept of transfer coefficients —— 110
5.3	Multiphase mass and heat transfer: inter- and intraphase effects —— 112
5.3.1	Exercise: mass transfer in series and/or in parallel —— 112
5.4	Mass transfer with reaction in gas–liquid reactors —— 113
5.4.1	Introduction —— 113
5.4.2	Chemical enhancement and the Hatta number —— 113
5.5	Mass transfer in heterogeneous catalysis —— 116

VIII — Contents

5.5.1	Introduction —— 116
5.5.2	Diffusion in porous catalysts —— 118
5.5.3	Consequences for catalyst performance —— 120
5.5.4	Effect on catalyst activity: Thiele modulus and the concept of
	effectiveness factor —— 120
5.5.5	Effect on apparent reaction orders —— 126
5.5.6	Effect on apparent activation energy —— 127
5.5.7	Effect of particle size and fluid velocity —— 129
5.5.8	Pore diffusion and catalyst design in terms of size and shapes —— 130
5.5.9	Example: the periodic table of the trilobes —— 131
5.6	Exercises —— 134
5.6.1	Industrial exercise 1: catalyst particle size and shape for the
	dehydration of MPC —— 134
5.6.2	Industrial exercise 2: diffusion and deactivation for bimodal pore size
	distribution —— 135
5.7	Takeaway learning points —— 138
	References —— 138
6	Quantification of mass transfer in G-L(-S) reactors —— 140
6.1	Introduction —— 140
6.2	Mass transfer coefficients and Sherwood numbers —— 141
6.3	Quantified mass transfer two- and three-phase bubble columns —— 142
6.3.1	Gas-liquid mass transfer in horizontal bubble columns —— 143
6.3.2	Liquid–solid mass transfer in three-phase bubble columns —— 144
6.3.3	Shear rate distribution commercial scale on bubbles and droplet size
	distribution —— 144
6.3.4	Particle (catalyst) breakage and attrition —— 145
6.4	G-L-S mass transfer in trickle-bed reactors —— 145
6.5	Process intensification methods for interface transfer —— 147
6.5.1	Rotating reactors —— 147
6.5.2	Other process intensified reactors —— 148
6.6	Exercises —— 148
6.7	Takeaway learning points —— 149
	References —— 149
7	Heat management —— 151
7.1	Introduction —— 151
7.2	Theory nonisothermal behavior reactors —— 151
7.2.1	Nonisothermal backmixed reactor —— 153
7.2.2	Nonisothermal tubular reactor —— 156
7.2.3	Reactor design to avoid temperature runaway —— 157

7.2.4	Quantified heat transfer for two- and three-phase slurry and fluid bed reactors —— 161
7.2.5	Mechanically stirred reactor heat transfer —— 164
7.3	Reactor operation and dynamic behavior —— 164
7.4	Exercises —— 166
7.5	Takeaway learning points —— 166
	References —— 166
8	Multiphase reactor modeling —— 168
8.1	Introduction —— 168
8.2	Models for and two- and three-phase fixed bed reactors —— 170
8.2.1	Adiabatic versus nonadiabatic —— 170
8.2.2	Pseudo-homogeneous models —— 171
8.2.3	Heterogeneous models —— 174
8.2.4	CFD models —— 175
8.3	Models for trickle-bed reactors —— 176
8.3.1	Co-current trickle-bed —— 176
8.3.2	Adiabatic trickle-bed —— 176
8.3.3	Multitubular heat exchange trickle-bed —— 176
8.3.4	Countercurrent trickle-bed flow —— 176
8.4	Models for bubble columns —— 177
8.4.1	Models for G/L bubble columns —— 177
8.4.2	CFD models for G/L/S (slurry) bubble columns —— 177
8.5	Models for fluid beds —— 178
8.5.1	Models for G/S fluid beds —— 178
8.5.2	CFD models for L/S fluid beds —— 178
8.5.3	CFD models for three-phase mechanically stirred fed-batch
	reactors —— 178
8.6	Exercises —— 179
8.6.1	Industrial exercise 1: trickle-bed reactor —— 179
8.7	Takeaway learning points —— 179
	References —— 180
Part (E: Stage-gate innovation methods
9	Stage-gate innovation methods —— 183
9.1	Introduction —— 183
9.2	Innovation stages overview —— 184
9.2.1	Discovery stage —— 184
9.2.2	Concept stage —— 184
9.2.3	Feasibility stage —— 184

X	-	Co	nter	ıts

9.2.4 Development stage —— 185	
9.2.5 Engineering procurement construction stage —— 185	
9.2.6 Operation stage —— 185	
9.2.7 Abandon stage —— 185	
9.3 Takeaway learning points —— 185	
References —— 186	
10 Multiphase reactor selection —— 187	
10.1 Introduction —— 187	
10.2 Critical review some academic methods reactor selection —— 187	
10.2.1 Reactor family tree selection —— 187	
10.2.2 Three-level multiphase reactor selection method —— 188	
10.3 Reactor selection method when scale-up risk is low for reactor types	
considered — 189 10.4 Introduction to industrial reactor selection and its practice — 189	
10.4 Introduction to industrial reactor selection and its practice — 189 10.4.1 Introduction — 189	
10.4.2 Ideation stage reactor type selection —— 192	
10.4.3 The power of reactor selection in the ideation stage: Shell shale	
fluid bed case —— 193	
10.5 Reactor type selection in the various innovation stages —— 195	
10.5.1 Concept phase reactor selection —— 195	
10.5.2 Feasibility stage reactor selection —— 198	
10.5.3 Development stage front-end engineering design reactor	
selection —— 202	
10.5.4 Engineering procurement construction (EPC) stage reactor	
selection —— 202	
10.6 Exercises —— 203	
10.6.1 Industrial exercise 1: reactor type selection in ideation stage —— 203	
10.6.2 Industrial exercise 2: reactor selection concept stage —— 203	
10.6.3 Industrial exercise 3: reactor family-type selection ideation stage ——	204
10.7 Takeaway learning points —— 205	
References —— 205	
11 New reaction systems through all innovation stages —— 206	
11.1 Introduction — 206	
11.2 Ideation stage (also called discovery stage, or early research	
stage) —— 206	
11.2.1 Ideation stage design —— 206	
11.2.2 Ideation stage modeling —— 207	
-	
11.2.3 Ideation stage proof of principle experiments —— 207	
 11.2.3 Ideation stage proof of principle experiments — 207 11.3 Concept stage (also called research stage) — 207 	

11.3.2	Concept modeling —— 211
11.3.3	Experimental validation —— 211
11.4	Feasibility stage design (also called first part of development
	stage) —— 212
11.4.1	Introduction —— 212
11.4.2	Reactor development plan overview —— 212
11.4.3	Critical performance factors for commercial-scale reactors —— 213
11.4.4	Reactor scale-up methods and applications —— 216
11.4.5	Cold flow test rigs —— 223
11.5	Development stage —— 224
11.5.1	Introduction —— 224
11.5.2	Pilot plant and test program execution —— 224
11.5.3	Front-end engineering design —— 224
11.6	Engineering, procurement, and construction (EPC) stage (also called
	execution stage) —— 226
11.6.1	Contractor choice and co-operation —— 226
11.6.2	Reactor procurement and construction —— 227
11.6.3	Commissioning —— 227
11.7	Start-up and normal operation (also called demonstration stage) —— 227
11.8	Exercises —— 228
11.8.1	Industrial exercise: glucose to ethylene glycol —— 228
11.9	Takeaway learning points —— 229
	References —— 230

Part D: Education

12	Education guidelines —— 235
2.1	Introduction —— 235
2.2	Challenges in chemical reaction engineering education —— 235
2.2.1	From Jan's recollection —— 235
2.2.2	From René's recollection —— 238
2.2.3	CRE as a language game linked to teaching —— 238
2.3	Guidelines to use this book in academic education —— 239
2.4	Guidelines to use this book in industry —— 240
2.5	Education options for industry practitioners —— 240
2.5.1	Learning course: industrial chemical reaction engineering and
	process concept design for nonchemical engineers —— 240
2.5.2	Hands-on course: industrial reaction engineering and conceptual
	process design —— 241
2.5.3	Course program —— 241

XII — Contents

12.6	Position of reaction engineering in chemical engineering
	curriculum —— 244
12.7	Takeaway learning points —— 244
	References —— 245
13	Industrial cases —— 246
13.1	Introduction —— 246
13.2	Gas-to-liquid (GTL) Shell case —— 246
13.2.1	Introduction to GTL case —— 246
13.2.2	A consecutive or a parallel reaction? —— 247
13.2.3	Flory–Schulz distributions —— 248
13.2.4	Why Shell experts "like" fixed bed reactors for GTL? —— 250
13.3	Ethyl benzene peroxidation reactor (EBHP) —— 254
13.3.1	Introduction to the case —— 254
13.3.2	Reaction description —— 255
13.3.3	The liquid-phase RTD experiments —— 256
13.3.4	Results of the liquid-phase RTD experiments —— 257
13.3.5	Results of the gas phase RTD experiments —— 259
13.3.6	Commercial plant improvements —— 263
13.3.7	Takeaway learning points —— 264
13.4	A new catalyst shape: pressure drop and packing density —— 265
13.4.1	Introduction —— 265
13.4.2	Initial evaluation —— 266
13.4.3	Experimental results —— 267
13.4.4	Takeaway learning points —— 267
13.5	Heavy residue oil upgrading: reactor type selections and
	development —— 268
13.5.1	Heavy residue upgrading introduction —— 268
13.5.2	Heavy residue upgrading reaction chemistry —— 269
13.5.3	Shell bunker flow selection and the development to commercial
	scale —— 270
13.5.4	LC-FINING™ residue hydrocracking in three-phase
	slurry-ebullated-bed reactor —— 274
13.5.5	Heavy oil upgrading by coking with Exxon Flexicoker fluid bed —— 275
13.5.6	Reactor type comparison – heavy petroleum upgrade —— 275
13.5.7	Exercises —— 276
13.5.8	Takeaway learning points —— 276
13.6	Reactor stability in an adiabatic trickle-bed reactor —— 277
13.7	Three-phase slurry-reactive distillation —— 279
13.7.1	Introduction —— 279
13.7.2	Takeaway learning points —— 280
13.8	Fluid bed retorting shale oil —— 280

13.8.1 13.8.2 13.8.3 13.8.4 13.8.5 13.8.6 13.8.7	Project starting points —— 280 Reaction kinetics, reactors, and process concept selections —— 281 Shale characteristics —— 282 Process concept —— 282 Process conditions —— 282 Process research items —— 283 Takeaway learning points —— 285 References: fluid bed retorting of shale —— 286
14	Education case study: polyolefin CRE and scale-up —— 287
14.1	Introduction —— 287
14.2	Discovery-stage reactor family selection —— 287
14.3	Concept stage —— 288
14.3.1	Scale-independent basics —— 288
14.3.2	Chemistry and stoichiometry of the reaction —— 288
14.3.3	Heat of reactions —— 291
14.3.4	Physical properties —— 292
14.3.5	Reaction engineering concept design —— 292
14.3.6	Solid-phase residence time distribution —— 293
14.3.7	Mass transfer limitations and concept design choices —— 295
14.3.8	Heat transfer limitations and concept design —— 297
14.3.9	Modeling for reactor sizing —— 303
14.4	Feasibility stage —— 304
14.4.1	Introduction —— 304
14.4.2	Commercial-scale design in feasibility stage —— 304
14.5	Development stage —— 310
14.5.1	Pilot plant design —— 310
14.5.2	Economics commercial scale, pilot plant and mock-up model —— 313
14.5.3	Risks and value of information assessment —— 313
14.5.4	Development: front-end engineering design —— 315
14.6	Commercial-scale implementation (EPC and start-up) —— 315
14.7	Exercises —— 315
14.7.1	Exercise 1: Thiele modulus description and calculation for polyolefin
	catalyst —— 315
14.7.2	Exercise 2: temperature catalyst particle —— 316
14.7.3	Exercise 3: polyethylene reactor design —— 316
14.8	Takeaway learning points —— 316
14.9	List of symbols —— 318
	References —— 318