Ten Physical Applications of Spectral Zeta Functions

Contents

1	INT	INTRODUCTION AND OUTLOOK				
	1.1	Zeta functions				
		1.1.1	The Riemann zeta function	-		
		1.1.2	The Hurwitz zeta function			
		1.1.3	The Epstein zeta function	4		
		1.1.4	A word on related bibliography	(
	1.2	Zeta f	unction regularization	(
		1.2.1	The zeta function of a differential operator	(
		1.2.2	Regularization of the vacuum energy	•		
	٠	1.2.3	Regularization of one-loop graphs	8		
			ples and a comparison with other procedures	.(
		1.3.1	Some explicit examples	(
		1.3.2	Comparison with other regularization methods 1			
		1.3.3	A word of warning	_ 4		
	1.4	Preser	nt developments and a point on rigor			
		1.4.1	Calculation of heat-kernel coefficients	. (
		1.4.2	Determinant of the Laplacian			
		1.4.3	Proper definition of the zeta function of a partial			
			differential operator	. (
			·			
2			MATICAL FORMULAS INVOLVING THE			
	DIFFERENT ZETA FUNCTIONS 21					
	2.1		ple recurrence for the higher derivatives of the Hurwitz			
			ınction			
	2.2	The z	eta-function regularization theorem			
		2.2.1	(1)			
	2.3		diate application of the theorem	38		
	2.4	Expressions for multi-series on combinations involving				
		arbitr	ary constants and exponents 4	1]		

3	A TREATMENT OF THE NON-POLYNOMIAL CONTRI-					
			S: APPLICATION TO CALCULATE PARTITION			
	\mathbf{FU}	NCTIO	ONS OF STRINGS AND MEMBRANES	51		
	3.1	Dealin	ng with the non-polynomical term Δ_{ER}	51		
		3.1.1	J 1 J	53		
		3.1.2	The remainder term and the Poisson resummation			
			formula	58		
	3.2		rical estimates of the remainder	60		
	3.3		cation: summation of the string partition function for			
		differe	ent ranges of the temperature	64		
4			ICAL AND NUMERICAL STUDY OF INHOMO- S EPSTEIN AND EPSTEIN-HURWITZ ZETA			
		NCTIO	·	73		
٠	4.1	Explic	cit analytical continuation of inhomogeneous			
			in zeta functions	74		
		4.1.1	The particular case of the basic one-dimensional			
			Epstein-Hurwitz series	76		
		4.1.2	The homogeneous case: Chowla-Selberg's formula	79		
		4.1.3	Derivation of the general formula	80		
	4.2	Nume	rical analysis of the inhomogeneous generalized			
		Epstein-Hurwitz zeta function				
		4.2.1	Asymptotic expansions of the function and its			
			derivatives with respect to the variable and			
			parameters	85		
5	PH	YSICA	AL APPLICATION: THE CASIMIR EFFECT	97		
	5.1	Essent	tials of the Casimir effect	97		
		5.1.1	The classical Casimir effect	97		
		5.1.2	Connection with the van der Waals forces and			
			the London theory	98		
		5.1.3	The specific contribution of Casimir and Polder:			
			retarded van der Waals forces	99		
		5.1.4	The Lifschitz theory			
	5.2	_	imental verification	103		
		5.2.1	The first direct experiments: Abrikosova & Deryagin,			
			Kitchener & Prosser, Sparnaay et al	103		

		5.2.2	The experiment of Tabor and Winterton: transition
			from normal to retarded van der Waals forces 103
		5.2.3	The experiment of Sabiski and Anderson 104
		5.2.4	A contemporary experiment
	5.3	The Ca	asimir effect in quantum field theory 106
		5.3.1	The local formulation of the Casimir effect 106
		5.3.2	The mystery of the 'Casimir effect 107
		5.3.3	The concept of the vacuum energy 108
		5.3.4	The explicit, regularized definition
			of the Casimir energy
		5.3.5	Definition of the Casimir energy density
			and its relation with the vacuum energy 111
	5.4	A very	simple computation of the Casimir effect
		5.4.1	The Casimir effect for a free massless scalar field in
			$\mathbf{S}^1 \times \mathbf{R}^d$ and in $\mathbf{T}^2 \times \mathbf{R}^2$ spacetimes
	٠	5.4.2	The case of a massless scalar field between
			p perpendicular pairs of parallel walls with
			Dirichlet boundary conditions
		5.4.3	Massless scalar field with periodic and Neumann
			boundary conditions, and electromagnetic field 122
,	EOI	ID DH	YSICAL APPLICATIONS OF THE
)			GENEOUS GENERALIZED
			-HURWITZ ZETA FUNCTIONS 129
			ation: the Casimir energy over Riemann surfaces
	6.2		ation: the Casimir energy over Identatin surfaces 130 ation: Kaluza–Klein model with spherical
	0.2		ctification
	6.3	•	l behavior of a field theory at non-zero temperature 143
	6.4		ation to quantizing through the Wheeler–De Witt
	0.4		on
		6.4.1	Explicit zeta-function calculation of the essential
		0.7.1	determinant and extrema of the potential 147
	4	642	An alternative treatment by means of Eisenstein series 153

7	MISCELLANEOUS APPLICATIONS COMBINING ZETA					
	WI'	TH O	THER REGULARIZATION PROCEDURES	157		
	7.1	Relati	on between the generalized Pauli-Villars and the			
		covari	ant regularizations	157		
	7.2	The C	Casimir energy corresponding to a piecewise			
		unifor	m string	163		
		7.2.1	The zero temperature theory	166		
		7.2.2	Regularized Casimir energy and numerical results .	169		
		7.2.3	The finite temperature theory	173		
8			TIONS TO GRAVITY, STRINGS			
	AN	D P-B	RANES	179		
	8.1		cation to spontaneous compactification			
			dimensional quantum gravity	180		
	8.2	Application to the study of the stability				
		of the rigid membrane				
		8.2.1	ı			
		8.2.2	The limit of large spacetime dimensionality			
		8.2.3	A saddle point analysis	187		
		8.2.4	Explicit expressions for the zeta-function			
			regularization of the effective potential			
		8.2.5	Discussion of the general case	190		
9			PLICATION: TOPOLOGICAL SYMMETRY	•		
			NG IN SELF-INTERACTING THEORIES	193		
	9.1		al considerations			
	9.2	The one-loop effective potential for the self-interacting theory 19				
	9.3	The one-loop topological mass				
	9.4		malization of the theory			
	9.5	Symm	netry breaking mechanism for a massless scalar field.	204		
R	efere	nces		209		
In	dex			221		