

Pierre N.V. Tu

Dynamical Systems

An Introduction with Applications
in Economics and Biology

Second Revised
and Enlarged Edition

With 105 Figures

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Contents

Preface	v
1 Introduction	1
2 Review of Ordinary Differential Equations	5
2.1 First Order Linear Differential Equations	6
2.1.1 First Order Constant Coefficient Linear Differential Equations	7
2.1.2 Variable Coefficient First Order Linear Differential Equations	9
2.1.3 Equations Reducible to Linear Differential Equations	11
2.1.4 Qualitative Solution: Phase Diagrams	12
2.1.5 Some Economic Applications	14
1. Walrasian Tâtonnement Process	14
2. The Keynesian Model	15
3. Harrod Domar's Economic Growth Model	16
4. Domar's Debt Model (1944)	17
5. Profit and Investment	17
6. The Neo-Classical Model of Economic Growth	18
2.2 Second and Higher Order Linear Differential Equations	19
2.2.1 Particular Integral (x_p or x_e) where $d(t) = d$ Constants	24
2.2.2 Particular Integral (x_p) when $d = g(t)$ is some Function of t	25
1. The Undetermined Coefficients Method	25
2. Inverse Operator Method	26
3. Laplace Transform Method	29
2.3 Higher Order Linear Differential Equations with Constant Coefficients	31
2.4 Stability Conditions	33
2.5 Some Economic Applications	34
1. The IS-LM Model of the Economy	34
2. A Continuous Multiplier-Acceleration Model	35
3. Stabilization Policies	35
4. Equilibrium Models with Stock	37
2.6 Conclusion	38
3 Review of Difference Equations	39
3.1 Introduction	39
3.2 First Order Difference Equations	40
3.2.1 Linear Difference Equations	40

3.2.2	Non-linear Difference Equations and Phase Diagram	42
3.2.3	Some Economic Applications	43
1.	The Cobweb Cycle	43
2.	The Dynamic Multiplier Model	44
3.	The Overlapping Generations Model	44
3.3	Second Order Linear Difference Equations	46
3.3.1	Particular Integral	46
3.3.2	The Complementary Functions $x_c(t)$	47
3.3.3	Complete Solution and Examples	49
3.4	Higher Order Difference Equations	51
3.5	Stability Conditions	51
3.5.1	Stability of First Order Difference Equations	52
3.5.2	Stability of Second Order Difference Equations	52
3.5.3	Stability of Higher Order Difference Equations	53
3.6	Economic Applications	54
3.6.1	Samuelson's (1939) Business Cycle	54
3.6.2	Hick's (1950) Contribution to the Theory of Trade Cycle	55
3.7	Concluding Remarks	57
4	Review of Some Linear Algebra	59
4.1	Vector and Vector Spaces	59
4.1.1	Vector Spaces	60
4.1.2	Inner Product Space	61
4.1.3	Null Space and Range, Rank and Kernel	62
4.2	Matrices	63
4.2.1	Some Special Matrices	63
4.2.2	Matrix Operations	64
4.3	Determinant Functions	65
4.3.1	Properties of Determinants	65
4.3.2	Computations of Determinants	66
4.4	Matrix Inversion and Applications	68
4.5	Eigenvalues and Eigenvectors	69
4.5.1	Similar Matrices	72
4.5.2	Real Symmetric Matrices	73
4.6	Quadratic Forms	74
4.7	Diagonalization of Matrices	76
4.7.1	Real Eigenvalues	76
4.7.2	Complex Eigenvalues and Eigenvectors	78
4.8	Jordan Canonical Form	79
4.9	Idempotent Matrices and Projection	81
4.10	Conclusion	82

5 First Order Differential Equations Systems	83
5.1 Introduction	83
5.2 Constant Coefficient Linear Differential Equation (ODE) Systems . . .	83
5.2.1 Case (i). Real and Distinct Eigenvalues	84
5.2.2 Case (ii). Repeated Eigenvalues	87
5.2.3 Case (iii). Complex Eigenvalues	88
5.3 Jordan Canonical Form of ODE Systems	89
Case (i) Real Distinct Eigenvalues	90
Case (ii) Multiple Eigenvalues	91
Case (iii) Complex Eigenvalues	93
5.4 Alternative Methods for Solving $\dot{x} = Ax$	95
5.4.1 Sylvester's Method	95
5.4.2 Putzer's Methods (Putzer 1966)	96
5.4.3 A Direct Method of Solving $\dot{x} = Ax$	97
5.5 Reduction to First Order of ODE Systems	98
5.6 Fundamental Matrix	98
5.7 Stability Conditions of ODE Systems	100
5.7.1 Asymptotic Stability	100
5.7.2 Global Stability: Liapunov's Second Method	101
5.8 Qualitative Solution: Phase Portrait Diagrams	102
5.9 Some Economic Applications	107
5.9.1 Dynamic IS-LM Keynesian Model	107
5.9.2 Dynamic Leontief Input-Output Model	109
5.9.3 Multimarket Equilibrium	111
5.9.4 Walras-Cassel-Leontief General Equilibrium Model	112
6 First Order Difference Equations Systems	115
6.1 First Order Linear Systems	115
6.2 Jordan Canonical Form	117
Case (i). Real Distinct Eigenvalues	118
Case (ii). Multiple Eigenvalues	119
Case (iii). Complex Eigenvalues	120
6.3 Reduction to First Order Systems	121
6.4 Stability Conditions	123
6.4.1 Local Stability	123
6.4.2 Global Stability	125
6.5 Qualitative Solutions: Phase Diagrams	126
6.6 Some Economic Applications	128
1. A Multisectoral Multiplier-Accelerator Model	128
2. Capital Stock Adjustment Model	129
3. Distributed Lags Model	129
4. Dynamic Input-Output Model	130

7 Nonlinear Systems	133
7.1 Introduction	133
7.2 Linearization Theory	134
7.2.1 Linearization of Dynamic Systems in the Plane	136
7.2.2 Linearization Theory in Three Dimensions	144
7.2.3 Linearization Theory in Higher Dimensions	145
7.3 Qualitative Solution: Phase Diagrams	147
7.4 Limit Cycles	149
Economic Application I: Kaldor's Trade Cycle Model	152
7.5 The Liénard-Van der Pol Equations and the Uniqueness of Limit Cycles	154
Economic Application II: Kaldor's Model as a Liénard Equation	156
7.6 Linear and Nonlinear Maps	157
7.7 Stability of Dynamical Systems	159
7.7.1 Asymptotic Stability	159
7.7.2 Structural Stability	160
7.8 Conclusion	161
8 Gradient Systems, Lagrangean and Hamiltonian Systems	163
8.1 Introduction	163
8.2 The Gradient Dynamic Systems (GDS)	163
8.3 Lagrangean and Hamiltonian Systems	167
8.4 Hamiltonian Dynamics	170
8.4.1 Conservative Hamiltonian Dynamic Systems (CHDS)	171
8.4.2 Perturbed Hamiltonian Dynamic Systems (PHDS)	174
8.5 Economic Applications	176
8.5.1 Hamiltonian Dynamic Systems (HDS) in Economics	176
8.5.2 Gradient (GDS) vs Hamiltonian (HDS) Systems in Economics	177
8.5.3 Economic Applications: Two-State-Variables Optimal Economic Control Models	178
8.6 Conclusion	181
9 Simplifying Dynamical Systems	183
9.1 Introduction	183
9.2 Poincaré Map	183
9.3 Floquet Theory	185
9.4 Centre Manifold Theorem (CMT)	187
9.5 Normal Forms	191
9.6 Elimination of Passive Coordinates	192
9.7 Liapunov-Schmidt Reduction	193
9.8 Economic Applications and Conclusions	194
10 Bifurcation, Chaos and Catastrophes in Dynamical Systems	195
10.1 Introduction	195
10.2 Bifurcation Theory (BT)	195

10.2.1	One Dimensional Bifurcations	197
10.2.2	Hopf Bifurcation	200
10.2.3	Some Economic Applications	204
1.	The Keynesian IS-LM Model	204
2.	Hopf Bifurcation in an Advertising Model	205
3.	A Dynamic Demand Supply Model	207
4.	Generalized Tobin's Model of Money and Economic Growth	208
10.2.4	Bifurcations in Discrete Dynamical Systems	209
1.	The Fold of Saddle Node Bifurcation	209
2.	Transcritical Bifurcation	210
3.	Flip Bifurcation	210
4.	Logistic System	210
10.3	Chaotic or Complex Dynamical Systems (DS)	211
10.3.1	Chaos in Unimodal Maps in Discrete Systems	212
10.3.2	Chaos in Higher Dimensional Discrete Systems	216
10.3.3	Chaos in Continuous Systems	216
10.3.4	Routes to Chaos	217
1.	Period Doubling and Intermittency	217
2.	Horseshoe and Homoclinic Orbits	218
10.3.5	Liapunov Characteristic Exponent (LCE) and Attractor's Dimension	221
10.3.6	Some Economic Applications	222
1.	Chaotic Dynamics in a Macroeconomic Model	222
2.	Erratic Demand of the Rich	224
3.	Structure and Stability of Inventory Cycles	224
4.	Chaotic economic Growth with Pollution	225
5.	Chaos in Business Cycles	226
10.4	Catastrophe Theory (C.T.)	226
10.4.1	Some General Concepts	227
10.4.2	The Morse and Splitting Lemma	228
10.4.3	Codimension and Unfolding	229
10.4.4	Classification of Singularities	231
10.4.5	Some Elementary Catastrophes	232
1.	The Fold Catastrophe	232
2.	The Cusp Catastrophe	233
10.4.6	Some Economic Applications	235
1.	The Shutdown of the Firm (Tu 1982)	235
2.	Kaldor's Trade Cycle	236
3.	A Catastrophe Theory of Defence Expenditure	238
4.	Innovation, Industrial Evolution and Revolution	240
10.4.7	Comparative Statics (C.S.), Singularities and Unfolding	241
10.5	Concluding Remarks	243

11 Optimal Dynamical Systems	245
11.1 Introduction	245
11.2 Pontryagin's Maximum Principle	245
11.2.1 First Variations and Necessary Conditions	248
11.2.2 Second Variations and Sufficient Conditions	252
11.3 Stabilization Control Models	253
11.4 Some Economic Applications	256
1. Intergenerational Distribution of Non-renewable Resources	256
2. Optimal Harvesting of Renewable Resources	256
3. Multiplier-Accelerator Stabilization Model	257
4. Optimal Economic Growth (OEG)	258
11.5 Asymptotic Stability of Optimal Dynamical Systems (ODS)	260
11.6 Structural Stability of Optimal Dynamical Systems	263
11.6.1 Hopf Bifurcation in Optimal Economic Control Models and Optimal Limit Cycles	263
Two-State-Variable Models	264
Multisectoral OEG Models	265
11.6.2 Chaos in Optimal Dynamical Systems (ODS)	267
11.7 Conclusion	268
12 Some Applications in Economics and Biology	271
12.1 Introduction	271
12.2 Economic Applications of Dynamical Systems	271
12.2.1 Business Cycles Theories	271
1. Linear Multiplier-Accelerator Models	272
2. Nonlinear Models	273
2.1. Flexible Multiplier-Accelerator Models	273
2.2. Kaldor's Type of Flexible Accelerator Models	275
2.3. Goodwin's Class Struggle Model	275
3. Optimal Economic Fluctuations and Chaos	276
12.2.2 General Equilibrium Dynamics	276
Tâtonnement Adjustment Process	277
Non-Tâtonnement Models	278
12.2.3 Economic Growth Theories	279
1. Harrod-Domar's Models	279
2. Neo-Classical Models	279
2.1. Two Sector Models	280
2.2. Economic Growth with Money	281
2.3. Optimal Economic Growth Models	282
2.4. Endogenous Economic Growth Models	282
12.3 Dynamical Systems in Biology	284
12.3.1 One Species Growth Models	284
12.3.2 Two Species Models	285
1. Predation Models	285
2. Competition Models	288
12.3.3 The Dynamics of a Heartbeat	288

12.4 Bioeconomics and Natural Resources	290
12.4.1 Optimal Management of Renewable and Exhaustible Resources	290
12.4.2 Optimal Control of Prey-Predator Models	292
(i) Control by an Ideal Pesticide	292
(ii) Biological Control	293
12.5 Conclusion	294
Bibliography	295