Site Symmetry in Crystals

Theory and Applications

Second Edition With 42 Figures

Contents

1.	Int	roduction	1
2.	Fin	ite Groups and Their Representations	5
	2.1	Elements of Group Theory	5
		2.1.1 Groups. Generators and Generating Relations.	
		Subgroups. Cosets. Invariant Subgroups.	
		The Factor Group	5
		2.1.2 Conjugate Elements and Classes. Factorization	
		of Groups	7
		2.1.3 Homomorphism and Isomorphism of Groups	9
	2.2	Elements of Group Representation Theory	10
		2.2.1 Representations of a Group. Equivalent, Reducible	
		and Irreducible Representations. Orthogonality Relations.	
		Representation Characters	10
		2.2.2 Decomposition of Representations.	
		Complex Conjugate Representations	15
	2.3	Generation of Representations	17
		2.3.1 Direct Product of Representations	17
		2.3.2 Subduction of Representations	20
		2.3.3 Induction of Representations	22
		2.3.4 Little Group Method	
		of Irreducible Representation Generation	26
3.	Syn	nmetry Groups and Their Representations	31
		The Euclidean Group and Its Subgroups	31
		3.1.1 Translation Group	31
		3.1.2 Rotation Group	32
		3.1.3 Inversion Group	35
		3.1.4 Full Orthogonal Group	35
		3.1.5 Euclidean Group	36
	3.2	Point Symmetry Groups	39
		3.2.1 Symmetry Elements of Molecules	
		and Crystallographic Point Groups	39
	_	3.2.2 Site Symmetry Subgroups of Point Groups	40
	3.3	Space Groups	43
		3.3.1 Symmetry of a Model of an Infinite Crystal.	
		Symmorphic and Nonsymmorphic Space Groups	43

		3.3.2 Symmetry of a Cyclic Model of a Crystal	46
	3.4	Site Symmetry in Space Groups	48
		3.4.1 Crystallographic Orbits. Wyckoff Positions	48
		3.4.2 Oriented Site Symmetry Groups. Choice of Origin	51
		3.4.3 Crystal Structure Types. Crystals with Space Group D_{4h}^{14} .	54
	3.5	Symmetry Operations in Quantum Mechanics	55
	5.5	3.5.1 Symmetry Group of a Quantum Mechanical System	55
		3.5.2 Wigner's Theorem	56
		3.5.3 Time-Reversal Symmetry	57
	3 6	Irreducible Representations of Rotation	51
	3.0	and Full Orthogonal Groups	59
	27	Representations of Point Groups	62
		-	70
	3.0	Representations of Space Groups	/0
		3.8.1 Irreducible Representations of the Translation Group.	70
		The Brillouin Zone	70
		3.8.2 Stars of Wave Vectors. Little Group.	7.
		Full Representations of Space Groups	76
		3.8.3 Small Representations of a Little Group.	=.
		Projective Representations of Point Groups	78
		3.8.4 Double-Valued Representations of Space Groups	79
		3.8.5 Dependence of the Labeling of the Irreducible	
		Representations of a Space Group on the Setting	81
		3.8.6 Example: Irreducible Representations	
		of Space Group D_{4h}^{14} . Compatibility Tables	84
	G.		0.0
4.		Symmetry and Induced Representations of Symmetry Groups	89
	4.1	Induced Representations of Point Groups.	0.0
		Correlation Tables	89
	4.2	Induced Representations of Space Groups	91
		4.2.1 Induction from Site Symmetry Subgroups	
		of Space Groups	. 92
		4.2.2 Induced Representations in the k -Basis.	
		Band Representations	93
		4.2.3 Simple and Composite Induced Representations	97
	4.3	Double-Valued Induced Representations	99
	4.4	Generation of the Simple Induced Representations	
		of the Space Group D_{4h}^{14}	100
	4.5	The Twenty-Four Most Common Space Groups: Crystal	
		Structures and Tables of Simple Induced Representations	103
		4.5.1 Tables of Simple Induced Representations and Their Use	103
		4.5.2 Space Groups and Crystal Structures	
		with Cubic Lattices	106
		4.5.3 Space Groups and Crystal Structures	
		with Hexagonal and Trigonal Lattices	111
		4.5.4 Space Groups and Crystal Structures	
		with Tetragonal Lattices	114

		Contents	XI
		4.5.5 Space Groups and Crystal Structures	
		with Orthorhombic Lattices	117
		4.5.6 Space Group Setting and Simple Induced Representations	
		for Monoclinic Space Groups	121
5.	Ap	plication of Induced Representations in the Electron Theory	
		Molecules and Crystals	125
	5.1	Adiabatic and One-Electron Approximations	125
		5.1.1 Space Symmetry	
		of the One-Electron Approximation Hamiltonian	129
	5.2	Induced Representations in the Electron Theory of Molecules	131
		5.2.1 Canonical, Localized and Hybridized Molecular Orbitals	131
		5.2.2 Localized Two-Center Bonds and Hybridized Orbitals	126
		in AB_4 and AB_3 Molecules	136 139
		5.2.4 Canonical and Localized Orbitals	133
		in the MnO_4^- Molecular Ion	140
		5.2.5 Localized Orbitals in the Tetrahedral Bi ₄ Molecule	142
	5.3	One-Electron Approximation for Crystals	144
		5.3.1 Crystalline Orbitals.	
		Degenerate and Nondegenerate Energy Bands	144
		5.3.2 Equivalent Hamiltonians	
		for the Same Crystal Structures	146
		5.3.3 $k-p$ Perturbation Method in the Energy Band Theory	147
		5.3.4 Zero-Slope Points of Energy Bands	150
		5.3.5 Energy Bands in the Neighborhood	
		of Degeneracy Points	152
		5.3.6 Additional Degeneracy of Energy Bands Due	
		to the Reality of the Hamiltonian	155
	<i>5</i> 1	5.3.7 Density of States of an Energy Band	155
	3.4	Induced Representations and the Theory of Chemical Bonding in Crystals	158
		5.4.1 Energy Band States and Localized Functions	158
		5.4.2 Localized Orbitals and Atomic States in Crystals	159
		5.4.3 Hybridized Orbitals in Crystals	160
		5.4.4 Crystals with Space Group O_h^7	161
		5.4.5 Crystals with Space Group O_h^5	162
		5.4.6 Crystals with Space Group D_{4h}^{14}	163
		5.4.7 One-Electron States in High-T _c Superconductors	165
	5.5	Energy Bands and Localized States	173
		5.5.1 Localized Orbitals and Parameters of an Energy Band	173
		5.5.2 Generation of Localized Functions in Crystals	174
		5.5.3 Interpolation Scheme Using Localized Functions	175
	5.6	Localized Orbitals in Molecular Models of Crystals	179
		5.6.1 Cluster Model of Perfect Crystals	179
		5.6.2 Cluster and Crystal Localized Orbitals	180

	5.6.3 Energy Bands of AgBr from Cluster Calculations	
	of $[Ag_{14}Br_{13}]^+$	181
	5.6.4 Cyclic Model as a Molecular Model of Crystals	182
	5.6.5 Localized Orbitals in the Cyclic Model	183
6.	Induced Representations in the Theory of Imperfect Crystals	185
	6.1 Point Defects in Crystals	185
	6.1.1 Single Defect Model	186
	6.1.2 Cluster Model of Imperfect Crystals	188
	6.1.3 Cyclic Model of Imperfect Crystals	189
	6.1.4 Band Model of Imperfect Crystals	189
	6.1.5 Localized Orbitals in the Band Model of Point Defects.	19 1
	6.2 Diperiodic Space Groups. Surface Electron States	192
	6.2.1 Diperiodic (Layer) Space Groups	192
	6.2.2 Site Symmetry in Layer Groups	195
	6.2.3 Irreducible Representations of Diperiodic Groups	197
	6.2.4 Induced Representations of Diperiodic Groups	199
	6.2.5 Use of Translational Symmetry in the Comparison	
	of Bulk and Surface Crystalline States	203
7.	Application of Induced Representations of Space Groups	
	to Second Order Phase Transitions	205
	7.1 Symmetry Rules in the Landau Theory	
	of Second Order Phase Transitions	205
	7.2 Tensor Fields in Crystals and Induced Representations	
	of Space Groups. Tensor Fields for Space Group D_{4h}^{14}	207
	7.3 Vibrational Field Representation and Phase Transitions	244
	in High-Temperature Superconductors	210
8.	Induced Representations of Space Groups	
	in Phonon Spectroscopy of Crystals	21:
	8.1 Phonon Symmetry Analysis	213
	8.2 Infrared and Raman Spectra Selection Rules	214
	8.3 Phonon Symmetry and Optical Spectra Selection Rules	
	in Semiconductor Superlattices	21:
	8.3.1 (GaAs) _m (AlAs) _n Superlattices	210
	8.3.2 $(Si)_m(Ge)_n$ Superlattices	22
	8.3.3 Experimental Applications	22
	8.4 Phonon Symmetry in High-Temperature Superconductors	227
	8.5 Phonon Symmetry in Diperiodic Systems	233
9.	Site Symmetry in Magnetic Crystals	
	and Induced Corepresentations	237
	9.1 Shubnikov Space Groups of Symmetry of Magnetic Crystals .	237
	9.2 Site Symmetry in Magnetic Crystals	238
	9.3 Corepresentations of Shubnikov Space Groups	241

		Contents	XIII
	9.4	Induced Corepresentations of Magnetic Space Groups	244
	9.5	Corepresentations of the Space Groups	
		of Antiferromagnetic La ₂ CuO ₄	247
10.	Site	Symmetry in Permutation – Inversion Symmetry Groups	
	of N	Nonrigid Crystals	251
	10.1	Symmetry Groups of Nonrigid Crystals	252
		10.1.1 Labeling of Nuclei. Sampling of Coordinate Systems	252
		10.1.2 Description of Permutation –	
		Inversion Symmetry Elements	253
		10.1.3 Coordinate Transformations Induced	
		by Permutation – Inversion Symmetry Elements	255
		10.1.4 Site Symmetry Group of a Rotating Molecule	
		in a Nonrigid Crystal	256
		10.1.5 Permutation – Inversion Group	
		of a Nonrigid Sodium Nitrate Crystal	257
	10.2	Irreducible Representations	
		of a Nonrigid Crystal Symmetry Group	260
		10.2.1 Generation of Irreducible Representations	260
		10.2.2 Irreducible Representations	
		of a Site Symmetry Group	261
		10.2.3 Classification of States	263
	10.3	Generalized Symmetry of High-Temperature Phase	
		of Fullerite C ₆₀	264
		10.3.1 Permutation – Inversion Symmetry Group	
		of Fullerite C ₆₀ in the High-Temperature Phase	265
		10.3.2 Irreducible Representations	
		of the Groups $[n]$ and P_c	265
		10.3.3 Classification of States of Nonrigid Fullerite C ₆₀	266
Ref	erenc	ces	269
a •	• ,		077
∖ ıı h	nect	Index	277