Alexander A. Samarskii Peter N. Vabishchevich

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Walter de Gruyter · Berlin · New York

Pı	Preface					
M	Main definitions and notations					
1	Inverse mathematical physics problems					
	1.1	Bound	ary value problems	1		
		1.1.1	Stationary mathematical physics problems	1		
		1.1.2	Nonstationary mathematical physics problems	2		
	1.2	Well-p	osed problems for partial differential equations	4		
		1.2.1	The notion of well-posedness	4		
		1.2.2	Boundary value problem for the parabolic equation	4		
		1.2.3	Boundary value problem for the elliptic equation	8		
	1.3	Ill-pos	ed problems	9		
		1.3.1	Example of an ill-posed problem	10		
		1.3.2	The notion of conditionally well-posed problems	11		
		1.3.3	Condition for well-posedness of the inverted-time problem	11		
	1.4	Classif	fication of inverse mathematical physics problems	13		
		1.4.1	Direct and inverse problems	13		
		1.4.2	Coefficient inverse problems	14		
		1.4.3	Boundary value inverse problems	15		
		1.4.4	Evolutionary inverse problems	16		
	1.5	Exerci	ses	16		
2	Boun	dary va	lue problems for ordinary differential equations	19		
	2.1	Finite-	difference problem	19		
		2.1.1	Model differential problem	19		
		2.1.2	Difference scheme	20		
		2.1.3	Finite element method schemes	23		
		2.1.4	Balance method	25		
	2.2	Conve	rgence of difference schemes	26		
		2.2.1	Difference identities	27		
		2.2.2	Properties of the operator $A \ldots \ldots \ldots \ldots$	28		
		2.2.3	Accuracy of difference schemes	30		
	2.3	Solutio	on of the difference problem	31		
		2.3.1	The sweep method	32		
		2.3.2	Correctness of the sweep algorithm	33		
		2.3.3	The Gauss method	34		
	2.4	Progra	m realization and computational examples	35		
		2.4.1	Problem statement	35		

		2.4.2	Difference schemes	37
		2.4.3	Program	39
		2.4.4	Computational experiments	43
	2.5	Exerci	ses	45
3	Boun	dary va	llue problems for elliptic equations	49
	3.1	The di	fference elliptic problem	49
		3.1.1	Boundary value problems	49
		3.1.2	Difference problem	50
		3.1.3	Problems in irregular domains	52
	3.2	Appro	ximate-solution inaccuracy	54
		3.2.1	Elliptic difference operators	54
		3.2.2	Convergence of difference solution	56
		3.2.3	Maximum principle	57
	3.3	Iteration	on solution methods for difference problems	59
		3.3.1	Direct solution methods for difference problems	59
		3.3.2	Iteration methods	60
		3.3.3	Examples of simplest iteration methods	62
		3.3.4	Variation-type iteration methods	64
		3.3.5	Iteration methods with diagonal reconditioner	66
		3.3.6	Alternate-triangular iteration methods	67
	3.4	Progra	am realization and numerical examples	70
		3.4.1	Statement of the problem and the difference scheme	70
		3.4.2	A subroutine for solving difference equations	71
		3.4.3	Program	79
		3.4.4	Computational experiments	83
	3.5	Exerci	ses	85
1	Roun		alue problems for parabolic equations	90
•	4.1	-	ence schemes	90
	7.1	4.1.1	Boundary value problems	90
		4.1.2	Approximation over space	92
		4.1.3	Approximation over time	93
	4.2		ity of two-layer difference schemes	95
	4.2	4.2.1		95
		4.2.2	Basic notions	97
		4.2.3	Stability with respect to find data	100
	4.3		-layer operator-difference schemes	102
	4.5	4.3.1	Stability with respect to initial data	102
		4.3.1	Passage to an equivalent two-layer scheme	104
		4.3.2	ρ-stability of three-layer schemes	104
		4.3.4	· ·	108
			Estimates in simpler norms	110
		4.3.5	Stability with respect to right-hand side	110

	4.4	Consid	deration of difference schemes for a model problem	110
		4.4.1	Stability condition for a two-layer scheme	111
		4.4.2	Convergence of difference schemes	112
		4.4.3	Stability of weighted three-layer schemes	113
	4.5	Progra	am realization and computation examples	114
		4.5.1	Problem statement	114
		4.5.2	Linearized difference schemes	115
		4.5.3	Program	118
		4.5.4	Computational experiments	121
	4.6	Exerci	ises	124
5	Solut	ion met	thods for ill-posed problems	127
	5.1	Tikhor	nov regularization method	127
		5.1.1	Problem statement	127
		5.1.2	Variational method	128
		5.1.3	Convergence of the regularization method	129
	5.2	The ra	ite of convergence in the regularization method	131
		5.2.1	Euler equation for the smoothing functional	131
		5.2.2	Classes of a priori constraints imposed on the solution	132
		5.2.3	Estimates of the rate of convergence	133
	5.3	Choice	e of regularization parameter	134
		5.3.1	The choice in the class of a priori constraints on the solution .	135
		5.3.2	Discrepancy method	136
		5.3.3	Other methods for choosing the regularization parameter	137
	5.4	Iterativ	ve solution methods for ill-posed problems	138
		5.4.1	Specific features in the application of iteration methods	138
		5.4.2	Iterative solution of ill-posed problems	139
		5.4.3	Estimate of the convergence rate	141
		5.4.4	Generalizations	143
	5.5	Progra	am implementation and computational experiments	144
		5.5.1	Continuation of a potential	144
		5.5.2	Integral equation	146
		5.5.3	Computational realization	147
		5.5.4	Program	148
		5.5.5	Computational experiments	152
	5.6	Exerci	ises	154
6	Right	-hand s	side identification	157
	6.1	Right-	hand side reconstruction from known solution: stationary prob-	
		lems .		157
		6.1.1	Problem statement	157
		6.1.2	Difference algorithms	158
		6.1.3	Tikhonov regularization	161

xii Contents

		6.1.4	Other algorithms	163
		6.1.5	Computational and program realization	164
		6.1.6	Examples	172
	6.2	Right-l	hand side identification in the case of parabolic equation	175
		6.2.1	Model problem	175
		6.2.2	Global regularization	176
		6.2.3	Local regularization	178
		6.2.4	Iterative solution of the identification problem	180
		6.2.5	Computational experiments	189
	6.3	Recons	struction of the time-dependent right-hand side	191
		6.3.1	Inverse problem	192
		6.3.2	Boundary value problem for the loaded equation	192
		6.3.3	Difference scheme	194
		6.3.4	Non-local difference problem and program realization	194
		6.3.5	Computational experiments	199
	6.4	Identif	ication of time-independent right-hand side: parabolic equations	201
		6.4.1	Statement of the problem	201
		6.4.2	Estimate of stability	202
		6.4.3	Difference problem	204
		6.4.4	Solution of the difference problem	207
		6.4.5	Computational experiments	215
	6.5	_	hand side reconstruction from boundary data: elliptic equations	218
		6.5.1	Statement of the inverse problem	218
		6.5.2	Uniqueness of the inverse-problem solution	219
		6.5.3	Difference problem	220
		6.5.4	Solution of the difference problem	224
		6.5.5	Program	226
		6.5.6	Computational experiments	234
	6.6	Exerci	ses	237
7	Evolu	itionary	inverse problems	240
	7.1	-	ocal perturbation of initial conditions	240
		7.1.1	Problem statement	240
		7.1.2	General methods for solving ill-posed evolutionary problems.	241
		7.1.3	Perturbed initial conditions	243
			Convergence of approximate solution to the exact solution	246
		7.1.5	Equivalence between the non-local problem and the optimal	
			control problem	250
		7.1.6	Non-local difference problems	252
		7.1.7	Program realization	256
		7.1.8	Computational experiments	260
	7.2		arized difference schemes	263
		7.2.1	Regularization principle for difference schemes	263
			e e e e e e e e e e e e e e e e e e e	

xiii

		7.2.2	Inverted-time problem	267
		7.2.3	Generalized inverse method	269
		7.2.4	Regularized additive schemes	277
		7.2.5	Program	281
		7.2.6	Computational experiments	288
	7.3	Iterativ	ve solution of retrospective problems	291
		7.3.1	Statement of the problem	291
		7.3.2	Difference problem	292
		7.3.3	Iterative refinement of the initial condition	292
		7.3.4	Program	295
		7.3.5	Computational experiments	302
	7.4	Second	d-order evolution equation	305
		7.4.1	Model problem	305
		7.4.2	Equivalent first-order equation	307
		7.4.3	Perturbed initial conditions	308
		7.4.4	Perturbed equation	311
		7.4.5	Regularized difference schemes	314
		7.4.6	Program	319
		7.4.7	Computational experiments	324
	7.5	Contin	nuation of non-stationary fields from point observation data	326
		7.5.1	Statement of the problem	326
		7.5.2	Variational problem	327
		7.5.3	Difference problem	329
		7.5.4	Numerical solution of the difference problem	331
		7.5.5	Program	333
		7.5.6	Computational experiments	340
	7.6	Exercis		343
0	041			
8		r proble		345
	8.1		nuation over spatial variable in boundary value inverse problems	345
		8.1.1	Statement of the problem	346
		8.1.2	Generalized inverse method	347
		8.1.3	Difference schemes for the generalized inverse method	350
		8.1.4	Program	354
	0.2	8.1.5	Examples	359
	8.2		ocal distribution of boundary conditions	362
		8.2.1	Model problem	362
		8.2.2	Non-local boundary value problem	362
		8.2.3	Local regularization	363
		8.2.4	Difference non-local problem	365
		8.2.5	Program	367
	0 -	8.2.6	Computational experiments	372
	83	Identif	ication of the boundary condition in two-dimensional problems	374

Index				
Bibliogr	aphy		435	
8.6	Exerci	ses	430	
	8.5.6	Computational experiments	427	
	8.5.5	Program		
	8.5.4	Iterative solution of the inverse problem		
	8.5.3	Difference inverse problem		
	8.5.2	Solution uniqueness for the inverse problem		
0.5	8.5.1	Statement of the problem		
8.5		cient inverse problem for elliptic equation		
	8.4.6	Computational experiments		
	8.4.5	Program		
	8.4.4	Difference problem		
	8.4.3	Parametric optimization		
	8.4.2	Functional optimization		
0.4	8.4.1	Statement of the problem		
8.4	8.3.6	Computational experiments	390 394	
	8.3.5	Program realization		
	8.3.4	Iterative refinement of the boundary condition		
	8.3.3	Difference problem		
	8.3.2	Iteration method		
	8.3.1	Statement of the problem		
			~	