Table of contents

Table of contents II
AcknowledgementsVII
Declaration in lieu of an oath on independent workVIII
Summary
ZusammenfassungXII
PrefaceXV
List of figuresXVI
List of tablesXVIII
List of abbreviationsXIX
1 Introduction
1.1 Background and motivation
1.2 State of the art in the research field
1.2.1 Introduction of hydrothermal processes and the status quo of hydrothermal
carbonization and liquefaction2
1.2.2 Fate of phosphate after hydrothermal carbonization and liquefaction7
1.2.3 Strategies for phosphate recovery following hydrothermal carbonization and
liquefaction8
1.2.4 Potential of recycled phosphate for reuse in agriculture11
1.3 Summary of the knowledge gaps
1.4 Research questions
1.5 Thesis structure16
1.6 References
2 Experimental and thermodynamic studies of phosphate behavior during the
hydrothermal carbonization of sewage sludge25
2.1 Abstract
2.2 Graphical abstract 26

	2.3	Hig	ghlights	26
	2.4	Int	roduction	27
	2.5	Ma	terials and methods	28
	2.5	5.1	Materials	28
		2.5.1.	1 Digested sewage sludge	28
		2.5.1.2	2 Hydrochar and process water from the hydrothermal carbonization of dig	gested
		sewag	ge sludge	29
	2.5	5.2	Methods	29
		2.5.2.1	1 Characterization of the digested sewage sludge, hydrochar, and process wa	ater29
		2.5.2.2	2 Thermochemical equilibrium calculation	30
	2.6	Res	sults and discussion	31
	2.6	5.1 I	Phosphate in digested sewage sludge	31
	2.6	5.2 I	Fate of phosphate	32
		2.6.2.1	Distribution of the elements P, Al, Ca, and Fe between hydrochar and pr	ocess
		water		33
	2.6.2.2		2 Distribution of the elements P, Al, Ca, and Fe within different spec	ies in
		hydro	char	35
		2.6.2.3	3 Equilibrium composition	37
	2.6	5.3 I	Possible transformation pathways of phosphate during hydrothermal carboniza	tion
				40
	2.7	Cor	nclusion	42
	2.8	De	claration of competing interest	42
	2.9	Acl	knowledgment	42
	2.10	Ref	ferences	43
3	Fe	edsto	ock-dependent phosphate recovery in a pilot-scale hydrothermal liquefa	ction
bio	o-cru	de pr	oduction	47
	3.1	Ab	stract	47
	3.2		roduction.	
	3.3		terials and methods	
	3.3		Hydrothermal liquefaction and its products	
	3.3		Phosphate recovery	
	2.0	_	1	III

3.3.2.1		.3.2.1	Solubility experiments	52
	3.	.3.2.2	Struvite production	52
3.3.3 Analyses				53
	3.	.3.3.1	Solid and oil phase	53
	3.	.3.3.2	Liquid phase	54
	3.4	Results	s and discussion	54
	3.4.3	l Nut	rient distribution in feedstocks and between HTL products	54
	3.4.2	2 Stra	tegy of phosphate recovery	58
	3.4.3	3 Pho	sphate recovery	60
	3.	.4.3.1	Release of phosphate from the HTL solid phase	60
	3.	.4.3.2	Phosphate precipitation in the form of struvite	63
	3.	.4.3.3	Overall consideration of process and mass flow of macronutrients .	66
	3.5	Conclu	asions	68
	3.6	Autho	r contributions	69
	3.7	Fundir	ng	69
	3.8	Ackno	wledgments	69
	3.9	Confli	cts of interest	69
	3.10	Refere	nces	69
4	Valo	orizatio	n of byproducts from hydrothermal liquefaction of sewage	sludge and
m	anure:	the dev	velopment of a struvite-producing unit for nutrient recovery	75
	4.1	Abstra	ct	75
	4.2		ical abstract	
	4.3 Introduction			
	4.4	Materia	als and methods	79
	4.4.1		process water and leachate from HTL solids as well as their respe	
	solu			
	4.4.2	2 Exp	erimental procedure	80
	4.	4.2.1	Precipitation experiments on the laboratory scale	
	4.	4.2.2	Precipitation experiments in the air-agitated system	
	4.4.3	B Cha	racterization of the precipitation process and its products	
	4.	4.3.1	Analytics	83

	4.4.3	3.2	Evaluation of the precipitation process
4	1.4.4	Esti	mation of experimental error85
4.5	R	esults	s and discussion
4	4.5.1	Effe	ect of inlet-mixed solution composition on HTL-based struvite precipitation86
	4.5.1	1.1	Change the molar ratio of struvite-forming ions in the inlet-mixed solution89
	4.5.1	1.2	Addition of complexing agent to the inlet-mixed solution to control the content
	of A	l and	Fe metal ions
	4.5.1	1.3	pH setting and reaction time91
	4.5.1	1.4	Quality of the precipitate91
4	1.5.2	App	lication of an air-agitated system for HTL-based struvite precipitation95
	4.5.2	2.1	Selection of favorable operating parameters for the evaluation of the air-agitated
	syste	em	95
	4.5.2	2.2	Effect of an air-agitated system on HTL-based struvite precipitation: a
	com	paris	on of the precipitation process on the laboratory scale and in the air-agitated
	syste	em	96
	4.5.2	2.3	Insight into the effect of Al, Fe, and Ca ions and organics on HTL-based struvite
	preci	ipitat	ion in the air-agitated system: a comparison of the precipitation process using
	inlet	-mixe	ed solutions of different complexities98
	4.5.2	2.4	Integration of the struvite-producing unit in the HTL bio-crude oil production:
	chall	lenge	s and prospects102
4.6	Co	onclu	sions
4.7	N	otes.	
4.8	A	ckno	wledgments
4.9	Re	eferei	nces
5 (Conclu	ısion	110
6 (Outloo		113
6.1			fate of the phosphate
		_	osphate recovery for its reuse in agriculture
6.3			
Currio	culum	vita	e of Ekaterina Ovsyannikova117

Total list of publications
Appendix 1. Experimental and thermodynamic studies of phosphate behavior during the
hydrothermal carbonization of sewage sludge
Appendix 2. Feedstock-dependent phosphate recovery in a pilot-scale hydrothermal
liquefaction bio-crude production
Appendix 3. Valorization of byproducts from hydrothermal liquefaction of sewage sludge
and manure: the development of a struvite-producing unit for nutrient recovery 129