Contents

1	Intr	oductio	on	1		
	1.1	Preser	nt Situation and Problem Statement	1		
	1.2	Resea	rch Objective and Structure of Thesis	5		
2	Theoretical Background and Technical Overview					
	2.1	Modu	larity of Product Systems and Product System Fleets	9		
		2.1.1	Modular Product System Architectures	9		
		2.1.2	Multiple Product Systems and Population Fleets	18		
	2.2	Life C	Cycle Thinking	20		
		2.2.1	Environmental Life Cycle Assessment	22		
		2.2.2	Life Cycle Costing	28		
	2.3	Sustai	nable Development and Corresponding Legislation	33		
		2.3.1	Environmental Impacts and Impact Assessment	33		
		2.3.2	Sustainability and Sustainable Development	36		
		2.3.3	General Environmental Legislation	41		
		2.3.4	Environmental Regulations for			
			the Automotive Industry	43		
	2.4	Life C	Cycle Engineering and Mathematical Optimization	51		
		2.4.1	Life Cycle Engineering	51		
		2.4.2	Optimization Approaches for Decision Support	57		
	2.5	Concl	usions Regarding the Theoretical Background	60		
3	Stat	e of Re	search and Identification of the Research Gap	63		
	3.1 Criteria and Requirements for Optimizing					
		the Ec	co-effectiveness of Product Systems	63		
		3.1.1	Criteria to Handle Product System Modularity	64		
			Criteria to Handle Use Case Specific Requirements	65		

		3.1.3 Criteria for Optimization Approach	66					
		3.1.4 Additional Requirements to Obtain Useful Results	67					
	3.2	Current Approaches and State of Research	68					
		3.2.1 Product Modularity	70					
		3.2.2 Modular Life Cycle Assessments	72					
		3.2.3 Optimization of LCA and LCC	75					
	3.3	Identification of the Research Gap	83					
4		cept for the Optimization of Eco-effectiveness of Product						
	Syst	Systems						
	4.1	Concept Requirements	91					
	4.2	Framework for the Optimization Concept	93					
		4.2.1 General Framework	93					
		4.2.2 Selection of Graph Theory as Optimization Approach	96					
	4.3	Modelling the Product System's Structure in a Network	103					
		4.3.1 Transformation of Modular Product Systems						
		into Networks	103					
		4.3.2 Product System Networks Including						
		Interdependencies	106					
		4.3.3 Network Reduction Strategies for Interdependency						
		Modelling	110					
		4.3.4 Strategy Adaption to Reduce the Data Demand						
		of LCA Values and LCC Values	115					
	4.4	Data Management of the Input Data	122					
	4.5	Adaption of Shortest Path Algorithms to the Problem						
		Statement	124					
	4.6	Visualization and Interpretation of Results	132					
5	Prot	totypical Implementation and Application of the						
	Met	hodology	137					
	5.1	Prototypical Implementation of the Optimization Approach	137					
	5.2	Exemplary Application Cycle of the Optimization Approach	141					
6	App	lication of the Optimization Approach to a Case Study						
	of th	ne Automotive Industry	145					
	6.1	Life Cycle Perspectives of a Vehicle	146					
		6.1.1 Product Life Cycle of a Vehicle	146					
		6.1.2 Environmental Assessment of a Vehicle's Life Cycle	148					
		6.1.3 Total Cost of Ownership along a Vehicle's Life						
		Cycle	151					

Contents xi

	6.2	Selection of Measures for the Reduction of Greenhouse	
	·	Gas Emissions	155
		6.2.1 Selection of Measures and Module Alternatives	156
		6.2.2 Measure Analysis Regarding LCA, LCC and	
		Availability	161
	6.3	Data Input for the Vehicle and Fleet Optimization	168
	6.4	Results of Optimization for Different Scenarios	171
		6.4.1 Analysis of the Results for a Single Vehicle	
		Optimization	174
		6.4.2 Analysis of Results for Vehicle Fleet Optimization	177
		6.4.3 Sensitivity Analysis of Results	184
	6.5	Findings for Further Vehicle Development and Fleet	
		Planning	187
7	Sun	mary, Critical Appraisal and Outlook	193
	7.1	Summary	193
	7.2	Critical Appraisal	195
	7.3	Outlook	196
Ap	pend	lix	199
Li	terati	ıre	203