Contents

1	Intro	duction.		1			
	1.1	What is Wave Turbulence?					
	1.2	Historic Remarks					
	1.3	Recent Developments					
		1.3.1	Rapid Expansion of WT Applications	3			
		1.3.2	Highly Improved Quality of Experimental Data				
			and Numerical Simulations of WT Systems	4			
		1.3.3	Discovery of Importance of Coherent Structures				
			in WT Evolution	5			
		1.3.4	Theory Extension Beyond Spectra	6			
		1.3.5	Study of the Finite-Box Effects	6			
	1.4	What i	s this Book About?	7			
	Refer	ences		9			
Pa	rt I P	rimer on	Wave Turbulence				
2	Wave	e Turbule	ence as a Part of General Turbulence Theory	17			
_	2.1		Facts about Hydrodynamic Turbulence	17			
		2.1.1	Richardson Cascade	18			
		2.1.2	Kolmogorov-Obukhov Theory	19			
		2.1.3	2D Turbulence	20			
	2.2	Placing Wave Turbulence in the Context of General					
		_	ence	25			
		2.2.1	Common Turbulence Properties	25			
		2.2.2	Distinct Properties of WT	26			
	Refer	rences		27			
_				•			
3		_	tient: A WT Cheatsheet	29			
	3.1	Weak '	Wave Turbulence	30			

digitalisiert durch

viii Contents

3.1.2 Dimensional Derivation of KZ Spectra 3.1.3 Examples 3.2 Strong Wave Turbulence and Critical Balance 3.2.1 MHD Turbulence 3.2.2 Gravity Water Waves 3.2.3 Stratified Turbulence 3.2.4 Rotating Turbulence 3.2.5 Quasi-Geostrophic Turbulence 3.2.6 Kelvin Waves 3.2.7 Burgers? KdV?	34 40 41 42 43 44
3.2 Strong Wave Turbulence and Critical Balance	40 41 42 43 44
3.2.1 MHD Turbulence 3.2.2 Gravity Water Waves 3.2.3 Stratified Turbulence 3.2.4 Rotating Turbulence 3.2.5 Quasi-Geostrophic Turbulence 3.2.6 Kelvin Waves 3.2.7 Burgers? KdV?	40 41 42 43 44
3.2.1 MHD Turbulence	40 41 42 43 44 45
3.2.2 Gravity Water Waves 3.2.3 Stratified Turbulence 3.2.4 Rotating Turbulence 3.2.5 Quasi-Geostrophic Turbulence 3.2.6 Kelvin Waves 3.2.7 Burgers? KdV?	41 42 43 44
3.2.3 Stratified Turbulence	42 43 44 45
3.2.4 Rotating Turbulence	43 44 45
3.2.5 Quasi-Geostrophic Turbulence	44
3.2.6 Kelvin Waves	45
3.2.7 Burgers? KdV?	
	40
4 Solutions to Exercises	49
4.1 Fjørtoft Argument in Terms of Centroids: Exercise 2.1.	49
4.2 k-Centroids versus l-centroids: Exercise 2.2	50
4.3 Four-Wave Resonances in 1D Systems: Exercise 3.1	50
4.4 Four-Wave 3 → 1 Resonances in 2D Systems: Exercise 3	5.2 51
References	52
Part II Wave Turbulence Closures	
	55
5 Statistical Objects in Wave Turbulence	
5.1 Statistical Variables	55
5.1 Statistical Variables	55
5.1 Statistical Variables	55 57
5.1 Statistical Variables	55 57 58
5.1 Statistical Variables	55 57 58
5.1 Statistical Variables	55 57 58 59 18 60
5.1 Statistical Variables	55 57 58 59 ns 60
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions. 5.6 RPA Averaging References Wave Turbulence Formalism	55 57 58 59 ns 60 63 66
5.1 Statistical Variables	55 57 58 59 ns 60 63 66
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions. 5.6 RPA Averaging References Wave Turbulence Formalism	55 57 58 59 ns 60 63 67
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Function 5.6 RPA Averaging References. 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas	55 57 58 58 59 59 50 60 63 66 67
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Function 5.6 RPA Averaging References 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks	55 57 58 59 ns 60 63 67 67
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions 5.6 RPA Averaging References 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks 6.1.1 Mahayana (Comprehensive Scheme)	55 57 58 59 ns 60 63 67 67 68 71
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions 5.6 RPA Averaging References 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks 6.1.1 Mahayana (Comprehensive Scheme) 6.1.2 Hinayana (Reduced Scheme)	55 58 59 ns 60 63 67 67 68 71 71
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions 5.6 RPA Averaging References 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks 6.1.1 Mahayana (Comprehensive Scheme) 6.1.2 Hinayana (Reduced Scheme) 6.2 Master Example: Petviashvilli Equation.	55 55 58 59 ns 60 63 66 67 67 68 71 72
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions 5.6 RPA Averaging References 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks 6.1.1 Mahayana (Comprehensive Scheme) 6.1.2 Hinayana (Reduced Scheme) 6.2 Master Example: Petviashvilli Equation 6.2.1 Conservation Laws 6.2.2 Fourier Space	55 55 58 59 ns 60 63 66 67 67 68 71 71 72 73
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions. 5.6 RPA Averaging References. 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks. 6.1.1 Mahayana (Comprehensive Scheme) 6.1.2 Hinayana (Reduced Scheme) 6.2 Master Example: Petviashvilli Equation. 6.2.1 Conservation Laws 6.2.2 Fourier Space 6.2.3 Interaction Representation	55 55 57 58 60 63 66 67 67 67 71 71 72 73
5.1 Statistical Variables. 5.2 Probability Density Functions. 5.3 Random Phase and Amplitude Fields 5.4 Generating Functions. 5.5 Wave Spectrum, Higher Moments and Structure Functions. 5.6 RPA Averaging References. 6 Wave Turbulence Formalism 6.1 Dharmachakra of Wave Turbulence: Main Steps, Ideas and Building Blocks. 6.1.1 Mahayana (Comprehensive Scheme) 6.1.2 Hinayana (Reduced Scheme) 6.2 Master Example: Petviashvilli Equation. 6.2.1 Conservation Laws 6.2.2 Fourier Space 6.2.3 Interaction Representation	55 55 57 58 60 63 66 67 67 67 71 71 72 73

Contents ix

		6.3.2	Weak Nonlinearity Expansion for the		
			Generating Function	76	
	6.4	Statistic	al Averaging	77	
	6.5	Large-B	Box and Weak-Nonlinearity Limits	80	
		6.5.1	Taking $L \to \infty$	81	
		6.5.2	Taking $\epsilon \to 0 \ldots \ldots$	81	
	6.6	The PD	F	83	
	6.7	Kinetic	Equation	84	
		6.7.1	Symmetrical Form of the Kinetic Equation	85	
	6.8	General	ization to Complex Wavefields	86	
		6.8.1	Hamiltonian Wave Equations	86	
	6.9	Four-Wa	ave and Higher-Order Systems	88	
		6.9.1	Four-Wave Systems	88	
		6.9.2	Systems with Higher-Order Wave Resonances	91	
	6.10	Evolution	on of Multi-Mode Statistics	94	
		6.10.1	Weak Nonlinearity Expansion of the		
			Generating Function	95	
		6.10.2	Statistical Averaging and Graphs	96	
		6.10.3	Equation for $\mathscr{Z}^{(N)}$	100	
		6.10.4	Equation for the PDF	101	
	6.11	General	ization to the Four-Wave and the		
		Higher-	Order Systems	103	
	Refere	ences		104	
7	Soluti	ions to Ex	kercises	107	
	7.1	One-Mode Generating Function for Gaussian			
			Exercise 5.1	107	
	7.2	One-Mo	ode Moments for Gaussian Fields: Exercise 5.2	107	
	7.3		er Multi-Point Moment: Exercise 5.3	108	
	7.4		Order Structure Function: Exercise 5.4	109	
	7.5	Invariants of the Petviashvilli Equation: Exercise 6.1 10			
	7.6	Charney-Hassegawa-Mima model: Exercise 6.2			
	7.7		Limit: Exercise 6.4	111	
	7.8		nd Fast Timescales in the Wave Amplitude		
			on: Exercise 6.7	112	
	7.9		ting U_{123} : Exercise 6.9	113	
	7.10		ar Phase Evolution: Exercise 6.11	113	
	7.11		stency of WT Expansions Without Frequency		
		Re-Norr	malization: Exercise 6.12	114	
	7.12		G_3 - G_5 : Exercise 6.16	115	
	7.13		ix: Interaction Coefficient for the Deep Water		
			Waves	115	
	Refere			116	

x Contents

Dort	TTT	Waya	Turbulence	Dradiations
гип	111	VVAVE	i iirnunence	Premennis

8	Conse		antities in Wave Turbulence and their Cascades	119	
	8.1	Conser	ved Quantities in Wave Turbulence	119	
		8.1.1	Energy and Momentum	119	
		8.1.2	Three-Wave Systems	120	
		8.1.3	Four-Wave Systems	122	
		8.1.4	Conservation Laws in the Multi-Particle		
			Statistics	123	
		8.1.5	Relation Between the Dynamical and the		
			Statistical Invariants	125	
	8.2	Direction	ons of Turbulent Cascades	126	
		8.2.1	Dual Cascade in the NLS and Other		
			Even-Wave Systems	126	
		8.2.2	Cascade of Momentum and Other		
			Non-Positive Invariants	128	
		8.2.3	Triple Cascade in the Petviashvilli and Other		
			Rossby/Drift Wave Systems	129	
	Refere	ences		132	
9			and Evolving Solutions for the Wave Spectrum	133	
	9.1		odynamic Equilibrium States: Rayleigh-Jeans	122	
			L	133	
	9.2	Cascad	e States: Kolmogorov-Zakharov Spectra	134	
		9.2.1	Three-Wave Systems	135	
		9.2.2	Four-Wave Systems	140	
		9.2.3	Temporal Evolution Leading to KZ Spectra:		
			Finite and Infinite Capacity Systems	143	
		9.2.4	KZ Spectra in Anisotropic Media	146	
		9.2.5	Other Power-Law Spectra in Anisotropic Media	148	
		9.2.6	Locality and Stability	150	
	Refere	ences		161	
	T21-14.	C'- EM	Seas to Misses Thembelson	163	
10			Cects in Wave Turbulence	164	
	10.1		Box Regime: Discrete Turbulence		
	10.2		-Box Regime: Kinetic Wave Turbulence	166 167	
	10.3		copic Turbulence: Sandpile Behavior		
	10.4		tence of Different Regimes in the k-Space	169	
	10.5		e Tree in the Discrete k-Space	169	
	Refere	ences		171	

Contents xi

11			he Higher-Order Statistics. Intermittency and	173		
	11.1	Solution	as for the One-Mode PDFs and the Moments	173		
	11.2	Wave T	urbulence Life Cycle	177		
	11.3		as for the N-Mode Joint PDF's	180		
	11.4	Validity	of RPA	182		
	Refere	ences		184		
12	Soluti		ercises	185		
	12.1		ophy Invariant: Exercise 8.1	185		
	12.2		tion Conservation for the Four-Wave			
		Systems	: Exercise 8.3	186		
	12.3	Rayleigh	h-Jeans Solutions: Exercise 9.1	186		
	12.4	Energy	Flux Direction in Systems with a Single			
		Relevan	t Dimensional Parameter: Exercise 9.2	187		
	12.5	Zakharo	ov Transform for the Four-Wave			
		Systems	: Exercise 9.3	187		
	12.6	Geomet	rical Condition of Stability: Exercise 9.9	187		
	Refere		*	188		
Par	t IV	Selected A	Applications			
13	Nonlo		RossbyWave Turbulence	191		
	13.1		Turbulence Nonlocal?	191		
	13.2	Nonloca	al weak Drift/Rossby Turbulence	192		
		13.2.1	Nonlocal Interaction with Large Scales	192		
		13.2.2	Evolution of Nonlocal Rossby/Drift Turbulence:			
			a Feedback Loop	194		
		13.2.3	Nonlocal Interaction with Small-Scale Zonal Flows	197		
	13.3	3.3 Beyond Weak Turbulence: Two Regimes of				
		Zonal-F	low Growth	199		
		13.3.1	Weak ZF: Diffusive Regime	202		
		13.3.2	Strong ZF: Rapid Distortion Regime	203		
		13.3.3	Transition Between the Two Regimes of the			
			Zonal Flow Generation	204		
	13.4	Numerio	cal Modeling of the Forced-Dissipated			
			quation	204		
	13.5	<u>.</u>				
		13.5.1	Relation Between the Spectrum and the Velocity			
			of the Large Scales: Exercise 13.1	207		
	Refere	maac		200		

xii Contents

14	Magn	eto-Hydr	odynamic Turbulence	209		
	14.1		ction	209		
	14.2	Reduced MHD model				
	14.3	Very Weak WT: Discrete Regime and 2D Enslaving 21				
	14.4	Large-Box Limit: Kinetic Regime				
		14.4.1	Weak Nonlinearity Expansion	215		
		14.4.2	Statistical Averaging	216		
		14.4.3	Conditions of Realizability of the			
			Kinetic Regime	220		
		14.4.4	Spectra in the Kinetic Regime: Energy			
			Cascades—Balanced and Imbalanced Turbulence	221		
		14.4.5	Cross-Helicity	223		
		14.4.6	Transient Evolution Leading to Formation of the			
			KZ Spectrum	224		
		14.4.7	PDF's in the Kinetic Regime:			
			Turbulence Intermittency	224		
	14.5	Mesosc	opic MHD Wave Turbulence	226		
	14.6		ry	227		
	14.7	Further Reading				
	References					
15	Bose-l	Einstein (Condensation	231		
	15.1	Introduction				
	15.2	Kinetic Equation for the Wave Spectrum				
	15.3	Role of Thermodynamic Solutions				
	15.4	Non-Equilibrium Condensation and KZ Spectra 23				
	15.5	Differential Approximation Model				
		15.5.1	DAM for NLS Wave Turbulence	238		
		15.5.2	What Happens When a Pure KZ Spectrum			
			Corresponds to "Wrong" Flux Direction?	240		
		15.5.3	Extending BEC Description to Include			
			Thermal Clouds	242		
		15.5.4	Wave-Particle Crossover in Turbulent			
			BEC Cascades	244		
	15.6	Transie	nt Evolution, Self-Similar Spectra	245		
	15.7	Breakdown of the Weak Four-Wave Turbulence and				
		Transition to a Three-Wave Regime				
		15.7.1	WT on Background of Strong Condensate	246		
		15.7.2	Strongly Nonlinear Transition Between the			
			Two Weakly Nonlinear Regimes	248		
	15.8	Direct (Cascade in 3D NLS	254		
	15.9		geneous WT in a Trapping Potential	256		
	15.10		sation in 1D Systems: Optical Turbulence	259		
	15.10	Summary 26				

Contents xiii

15.12	Solution	s to Exercises	263			
	15.12.1	Direct Cascade in 2D NLS: Exercise 15.2	263			
	15.12.2	Front Solution for Inverse Cascade in 2D NLS:				
		Exercise 15.3	263			
	15.12.3	KZ Solutions and Flux Directions for Boltzmann				
		Gas: Exercise 15.4	264			
	15.12.4	Front Solutions for Boltzmann: Exercise 15.5	265			
	15.12.5	Madelung Transformation: Exercise 15.6	265			
	15.12.6	KZ Spectra for 1D Optical Turbulence:				
		Exercise 15.7	265			
	15.12.7	DAM for 1D Optical Turbulence: Exercise 15.8	267			
Refere	nces		267			
List of	f Projects		269			
16.1						
			264 265 265 265 267 267			
16.2						
16.3	- · · · · · · · · · · · · · · · · · · ·					
16.4			272			
16.5						
16.6			275			
16.7						
Refere						
	Refere List of 16.1 16.2 16.3 16.4 16.5 16.6 16.7	15.12.1 15.12.2 15.12.3 15.12.4 15.12.5 15.12.6 15.12.7 References List of Projects 16.1 Different Turbuler 16.2 Collapse 16.3 Modulati 16.4 Interactii 16.5 Superflu 16.6 Gravity 16.7 Metal-Pl	15.12.1 Direct Cascade in 2D NLS: Exercise 15.2			