Contents

Preface xiii

1	Introduction and Fundamentals of Mixed-Valence
	Chemistry 1
	Chun Y. Liu and Miao Meng
1.1	Introduction 1
1.2	Brief History 4
1.3	Diversity of Mixed-Valence Systems – Some Examples 6
1.4	Characterization and Evaluation of Mixed-Valence Systems 12
1.4.1	Electron Paramagnetic Resonance Spectroscopy 12
1.4.2	Electrochemical Methods 13
1.4.3	Optical Analysis 14
1.5	Important Issues in Mixed-Valence Chemistry 16
1.5.1	System Transition in Mixed Valency from Localized to Delocalized 16
1.5.2	Solvent Control of Electron Transfer 17
1.6	Theoretical Background 18
1.6.1	Potential Energy Surfaces from Classical Two-State Model 18
1.6.2	Quantum Description of the Potential Energy Surfaces 20
1.6.3	Reorganization Energies 24
1.6.4	Electronic Coupling Matrix Element and the Transition Moments 26
1.6.5	The Generalized Mulliken-Hush Theory (GMH) 27
1.6.6	Analysis of IVCT Band Shape 28
1.6.7	Rate Constant Expressions of Electron Transfer Reaction – The Marcus
	Theory 30
1.6.8	McConnell Superexchange Mechanism and the CNS Model 32
1.7	Conclusion and Outlook 35
	Acknowledgments 35
	References 36

vi	Contents

vi	Contents	
	2	Conceptual Understanding of Mixed-Valence Compounds and Its Extension to General Stereoisomerism 45
		Jeffrey R. Reimers and Laura K. McKemmish
	2.1	Introduction 45
	2.2	Modeling MV and Related Chemistry 47
	2.2.1	Origins Within Chemical Bonding Theory 47
	2.2.2	Coupled Harmonic Oscillator Model 48
	2.2.3	Intermolecular and Intramolecular Contributions to the Reorganization Energy 55
	2.2.4	Effects of Electric Fields on MV Optical Band Shapes 56
	2.2.5	Non-adiabatic Effects 58
	2.2.6	MV Complexes as Potential Quantum Qubits 60
	2.2.7	Entanglement as a Measure of the Failure of the BO Approximation 64
	2.2.8	Further Reading 65
	2.3	Some Traditional Mixed-Valence Example Molecules and Iconic Model Systems 65
	2.3.1	Photochemical Charge Separation 66
	2.3.2	MV Excited States in a Bis-Metal Complex 66
	2.3.3	Hole Transport in a Molecular Conducting Material 68
	2.3.4	Ground-State Delocalization in the Creutz-Taube Ion 68
	2.3.5	Photochemical Charge Separation During Bacterial Photosynthesis 70
	2.3.6	Prussian Blue 73
	2.4	Applications to Stereoisomerism 73
	2.4.1	Breakdown of Aromaticity in the $(\pi, \pi^*)^3 A_1$ Triplet Ground State of Pyridine 74
	2.4.2	Isomerism of BNB 75
	2.4.3	Isomerism of Ammonia and Related Molecules 75
	2.4.4	Proton Transfer in [NH ₃ ·H·NH ₃] ⁺ 79
	2.4.5	Aromaticity in Benzene 80
	2.5	Conclusion and Outlook 81
		References 82
	3	Quantum Chemical Approaches to Treat Mixed-Valence Systems Realistically for Delocalized and Localized
		Situations 93
	2.1	Martin Kaupp
	3.1	Introduction and Scope 93
	3.2	How Did We Start 94
	3.3	Moving to Transition Metal MV Systems, Getting into Conformational Aspects 97
	3.4	More Recent Work on Organic MV Systems and More General Use for Charge Transfer Questions 99
	3.5	More Recent Insights into Conformational Aspects for Transition Metal Complexes 100
	3.6	Other Applications to Organometallic MV Systems 103

3.7	Limitations of the Simple Computational Protocols, Gas-Phase
	Benchmarks, and Improved Electronic Structure Methods 104
3.8	More Advanced Treatments of Environmental Effects 109
3.9	Conclusion and Outlook 111
	Acknowledgement 112
	References 113
4	Mixed Valency in Ligand-Bridged Diruthenium Complexes 121 Sanchaita Dey, Sudip Kumar Bera, Wolfgang Kaim, and Goutam Kumar Lahiri
4.1	Introduction 121
4.2	Ru ^{II} Ru ^{III} Mixed-Valent Systems 124
4.2.1	Pyrazine-Derived Bridges 124
4.2.2	Other Bridging Ligands 130
4.2.2	Ru ^{III} Ru ^{IV} Mixed-Valent Systems 135
4.4	Ru ^{II} Ru ^I and Ru ^I Ru ⁰ Mixed-Valent Systems 139
4.5	Conclusion and Outlook 141
4.5	Acknowledgment 142
	References 142
	References 142
5	Electronic Communication in Mixed-Valence (MV) Ethynyl, Butadiynediyl, and Polyynediyl Complexes of Iron, Ruthenium, and Other Late Transition Metals 151
<i>-</i> 1	Sheng Hua Liu, Ya-Ping Ou, and František Hartl
5.1	Introduction 151
5.2	Iron–Ethynyl Complexes 152
5.2.1	Dinuclear Iron–Ethynyl Complexes with Butadiynediyl Bridge 153
5.2.2	Dinuclear Iron–Ethynyl Complexes with Diynediyl, Polycyclic Aromatic Hydrocarbons and Heterocycles in the C ₄ Bridge Core 154
5.2.3	Dinuclear Iron–Ethynyl Complexes with Non-conjugated C ₄ Bridge Core 156
5.2.4	Functionalized Dinuclear Iron-Ethynyl Complexes 157
5.3	Ruthenium–Ethynyl Complexes 158
5.3.1	Dinuclear Ruthenium-Ethynyl Complexes with Cp'(L2)Ru-Based
	Termini 158
5.3.2	Dinuclear Ruthenium–Ethynyl Complexes with Ru(dppe) ₂ X-Based
	Termini 163
5.3.3	Ruthenium-Ethynyl Complexes with Alternating Polyyndiyl and Capped
	Ru–Ru Units 165
5.3.4	Ruthenium-Ethynyl Complexes with Other Ruthenium-Ethynyl
	Termini and Core Units 166
5.4	Other Transition Metal–Ethynyl Complexes 168
5.4.1	Dinuclear Group 6 (Cr and Mo) Metal-Ethynyl Complexes 168

viii	Contents	
	5.4.2	Dinuclear Group 7 (Mn and Re) Metal–Polyynediyl Complexes 169
	5.4.3	Dinuclear Group 8 (Os) and Group 9 (Co) Metal-Polyyndiyl
		Complexes 170
	5.5	Concluding Remarks and Outlook 171
		Acknowledgment 172
		References 172
	6	Electron Transfer in Mixed-Valence Ferrocenyl-Functionalized
		Five- and Six-Membered Heterocycles 181
		Peter Frenzel and Heinrich Lang
	6.1	Introduction 181
	6.2	Ferrocenyl-Functionalized Five-Membered Heterocycles 182
	6.2.1	Five-Membered Heterocyclic Compounds with Group 13
		Elements 183
	6.2.2	Five-Membered Heterocyclic Compounds with Group 14 Elements 183
	6.2.3	Five-Membered Heterocyclic Compounds with Group 15 Elements 185
	6.2.4	Five-Membered Heterocyclic Compounds with Group 16 Elements 201
	6.2.5	Five-Membered Heterocyclic Compounds with Transition Metal Elements 213
	6.3	Ferrocenyl-Functionalized Six-Membered Heterocycles 217
	6.4	Conclusion and Outlook 218
	0.4	Acknowledgment 219
		References 220
	7	Electronic Coupling and Electron Transfer in Mixed-Valence
		Systems with Covalently Bonded Dimetal Units 229
		Chun Y. Liu, Nathan J. Patmore, and Miao Meng
	7.1	Introduction 229
	7.2	Synthesis and Characterization 233
	7.3	$d(\delta)(M_2)$ -p(π)(Ligand) Conjugation 235
	7.4	Electronic and Intervalence Transitions and DFT Calculations 238
	7.5	Transition in Mixed Valency Between Robin-Day Classes 240 Distance Department of Electronic Coupling and Electron Transfer 247
	7.6	Distance Dependence of Electronic Coupling and Electron Transfer 247 Conformational Effects of Electronic Coupling and Electron
	7.7	Transfer 252
	7.8	Class III and Beyond 256
	7.9	Cross-Conjugation and Quantum Destructive Effect 257
	7.10	Electronic Coupling and Electron Transfer Across Hydrogen Bonds 258
	7.11	Mixed-Valence Diruthenium Dimers 260
	7.12	Conclusions and Outlook 262
		Acknowledgments 263
		References 263

8	Mixed-Valence Electron Transfer of Cyanide-Bridged Multimetallic Systems 269 Shao-Dong Su, Xin-Tao Wu, and Tian-Lu Sheng
8.1	Introduction 269
8.2	Dinuclear Cyanide-Bridged Mixed-Valence Complex 272
8.3	Trinuclear Cyanide-Bridged Mixed-Valence Complex 276
8.4	Tetranuclear and Higher Nuclear Cyanide-Bridged Mixed-Valence Complex 284
8.5	Conclusion and Outlook 290
	Acknowledgment 290
	References 291
9	Organic Mixed-Valence Systems: Toward Fundamental Understanding of Charge/Spin Transfer Materials 297 Akihiro Ito
9.1	A Brief Sketch of the History of Organic Mixed-Valence Systems 297
9.2	A Glossary for This Chapter 299
9.2.1	Hush Analysis 300
9.2.2	Mulliken–Hush Two-State Analysis 301
9.2.3	Mulliken–Hush Two-Mode Analysis 301
9.2.4	Generalized Mulliken–Hush Three-State Analysis 302
9.3	Relationship Between Bridging Units and Electronic Coupling 304
9.4	Where to Attach Redox Centers 310
9.5	Through-Bond or Through-Space? 311
9.6	Control of Spin States Through Mixed-Valence States 314
9.7	Future Prospects 315
	Acknowledgment 316
	References 316
10	Mixed-Valence Complexes in Biological and Bio-mimic Systems 323 Xiangmei Kong, Yixin Guo, Zijie Zhou, and Tianfei Liu
10.1	Introduction 323
10.2	Mixed-Valence Iron–Sulfur Clusters in Biological and Bio-mimic Systems 325
10.2.1	Basic FeS Clusters 325
10.2.2	[FeFe]-Hydrogenase 326
10.2.3	Nitrogenases 328
10.2.4	Carbon Monoxide Dehydrogenase 329
10.3	Mixed-Valence Systems in Multiheme and Other Multiiron-Contained Biological Systems and Their Mimics 331

×	Contents	
	10.4	Mixed-Valence Multicopper Cofactors in Biological and Mimicking Systems 332
	10.5	OEC and Other Mixed-Valence Multimanganese Cofactors 336
	10.6	Summary 339
		Acknowledgement 339 References 340
		References 340
	11	Control of Electron Coupling and Electron Transfer Through
		Non-covalent Interactions in Mixed-Valence Systems 349
		Zijie Zhou, Yixin Guo, Xiangmei Kong, Ying Wang, and Tianfei Liu
	11.1	Introduction 349
	11.2	Electronic Coupling Through Hydrogen Bonds 350
	11.2.1	Electronic Coupling Between Transition Metal Centers Through Hydrogen Bonds 350
	11.2.2	Electronic Coupling Between Organic Fragments Through Hydrogen Bonds 353
	11.3	Modulation of Electronic Coupling via Host–Guest or Through-Space
	11.5	Interaction 356
	11.4	Conclusion 361
		Acknowledgment 361
		References 361
	12	Stimulus-Responsive Mixed-Valence and Related
		Donor-Acceptor Systems 365
		Jiang-Yang Shao and Yu-Wu Zhong
	12.1	Introduction 365
	12.2	Photoswitchable Compounds 365
	12.3	Anion-Responsive Compounds 378
	12.4	Proton-Responsive Compounds 380
	12.5	Conclusion and Outlook 385
		Acknowledgement 385
		References 385
	13	Mixed Valency in Extended Materials 393
		Harrison S. Moore, Eleanor R. Kearns, Martin P. van Koeverden, and Deanna
		M. D' Alessandro
	13.1	Introduction 393
	13.1.1	Fundamental Aspects of Mixed Valency in the Solid State 393
	13.1.2	Quantum Mechanical Considerations in Mixed Valency and IVCT 394
	13.1.3	Marcus-Hush Theory and the Quantification of CT 395
	13.1.4	Classifications of Mixed Valency 395
	13.1.5	Organic Mixed Valency 396
		·
	13.2	Electron Transfer in Extended MV Materials 397
		·

13.2.2.1	Thiazolo[5,4-d]thiazole-Based Compounds 397
13.2.2.2	Tetrathiafulvalene (TTF)-Based Compounds 399
13.2.2.3	Tetraoxolene-Based Compounds 400
13.2.2.4	Naphthalenediimide (NDI)-Based Compounds 405
13.2.2.5	-
13.2.2.6	Covalent-Organic Frameworks (COFs) 407
13.2.3	Metal-Based Mixed Valency 408
13.2.3.1	First-Row Transition Metals 408
13.2.3.2	Other Metals 414
13.2.3.3	Catalysis in Uncoupled MV Systems 414
13.3	Conclusion 418
	References 419
14	Near-Infrared Electrochromism Based on Intervalence Charge
	Transfer 431
	Ying Han, Xiaohua Cheng, Yu-Wu Zhong, and Bin-Bin Cui
14.1	Introduction 431
14.2	Near-Infrared Electrochromic Materials 432
14.2.1	Inorganic NIR Electrochromic Materials 433
14.2.2	Organic NIR Electrochromic Materials 435
14.2.2.1	-
14.2.2.2	Triphenylamine Derivatives 437
14.2.2.3	Organic Conducting Polymers 439
14.2.2.4	Covalence-Organic Framework (COF) 442
14.2.3	Organic-Inorganic Hybrid NIR Electrochromic Materials 444
14.2.3.1	Metal Complexes 444
14.2.3.2	Conducting Polymers of Metal Complexes 447
14.2.3.3	Monolayer and Multilayer Assembled Films 452
14.3	Potential Applications of NIR Electrochromic Materials 453
14.3.1	Smart Windows 453
14.3.2	Molecular Logic Gates and Optical Storage 453
14.3.3	Optical Communication 453
14.3.4	Military Camouflage 454
14.4	Summary and Outlook 454
	Acknowledgment 455
	References 455
15	Manipulation of Metal-to-Metal Charge Transfer Toward
	Switchable Functions 463
	Wen Wen, Yin-Shan Meng, and Tao Liu
15.1	Introduction 463
15.2	Switchable Cyanide-Bridged MMCT Systems 465
15.3	Cyanide-Bridged MMCT Complexes Showing Switchable Functional Properties 472
15.3.1	Modulating Molecular Nanomagnet Behavior 472
· · · · - · -	0

xii | Contents

15.3.2	Modulating Molecular Electric Dipole 474
15.3.3	Modulating Thermal Expansion Behavior 478
15.3.4	Modulating Photochromic Behavior 480
15.4	Conclusion and Outlook 483
	References 484

Index 492