

Contents

In Memory v

Preface xi

The State of Turbulence Research

John L. Lumley 1

Introduction 1

Some Quotes from my Colleagues 2

Dynamical Systems Theory, Coherent Structures, and Statistical

Approaches 7

References 10

Contributions of Numerical Simulation Data Bases to the Physics, Modeling, and Measurement of Turbulence

Parviz Moin and Philippe R. Spalart 11

Introduction 11

Code Verification and Issues Concerning Turbulence Statistics Near a Wall 12

Structure of Turbulence Near the Wall 14

Organized Structures in Homogeneous Turbulent Shear Flow 20

Statistical Analysis of Organized Structures 22

Evaluation of Hot-Wire Response in a Turbulent Boundary Layer 30

Application to Turbulence Modeling 34

Summary 35

References 36

The Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures

William K. George 39

Introduction 39

The Purpose of This Paper 40

The Turbulent Jet 41

The Traditional Approach 43

Real Jets 46

Self-Preservation of Jets: Another Look 47

Self-Preservation of Turbulence Quantities 50

The Plane Wake 54

The Point Source of Drag 57

Wakes Generated by Real Sources 58

The Axisymmetric Wake: A Flow Which Does Not Evolve at Constant Reynolds Number	61
Self-Preservation Analysis of Other Turbent Flows	66
Self-Preservation and Kolmogorov's Theories for Small Scale Turbulence	67
Coherent Structures and Self-Preservation	69
Self-Preservation and Turbulence Modeling	70
Acknowledgments	71
References	71

Engineering Turbulence Models

<i>Dale B. Taulbee</i>	75
------------------------	-----------

Introduction	75
Two-Equation Models	79
Low Reynolds Number $k-\epsilon$ Model	88
Second Order Modeling	91
Concluding Remarks	117
References	119

Chaos and the Onset of Turbulence

<i>Rene Chevray</i>	127
---------------------	------------

Introduction	127
Dynamical Systems	128
Quantifying Chaos	132
Strange Attractors and the Lorenz System	137
Roads to Chaos	138
Chaos in Fluids	144
Conclusion	155
Acknowledgments	155
References	156

Advances in Turbulence Measurement Techniques

<i>Preben Buchhave</i>	159
------------------------	------------

Introduction	159
The Hot-Wire/Hot-Film Anemometer	162
Laser Anemometry	174
Particle Image Velocimetry	186
References	190

The Role of Smoke Visualization and Hot-Wire Anemometry in the Study of Transition

<i>Thomas J. Mueller</i>	195
--------------------------	------------

Introduction	195
Historical Background	195

Equipment and Methods	200
Transition	207
Concluding Remarks	218
Acknowledgments	218
References	218
Index	229