Contents

ĺ	Significance of Molecular and Fluid-Dynamic Approaches			
	to Interface Phenomena			
	1.1	Vapor-	-Liquid Interface and Kinetic Boundary Condition (KBC)	
	1.2	Why A	Are Measurements of α_e and α_c So Difficult?	
		1.2.1	Unsteady Nonequilibrium Condensation Induced by Shock	
			Wave Reflection	
		1.2.2	Temporal Transition Phenomenon of Interface	
			Displacement	
		1.2.3	Mechanism of Temporal Transition Phenomenon	
	1.3	Realiz	ation of Nonequilibrium States	
		1.3.1	Another Prerequisition and Shock Wave	
		1.3.2	Previous Studies of Condensation by Shock Wave	
	1.4	Consti	itution of This Book	
	Refe	erences		
2	Kin		undary Condition at the Interface	
	2.1		scopic Description of Molecular Systems	
		2.1.1	Equation of Motion	
		2.1.2	Liouville Equation	
		2.1.3	Definitions of Macroscopic Variables and Equations	
			in Fluid Dynamics	
	2.2	Molec	rular Dynamics Simulation	
		2.2.1	Lennard-Jones Potential and Normalization of Variables	
		2.2.2	Finite Difference Method	
		2.2.3	Example: Vapor–Liquid Equilibrium State	
	2.3		c Theory of Gases	
		2.3.1	Boltzmann Equation	
		2.3.2	Boundary Condition for the Boltzmann Equation	
	2.4	Kineti	c Boundary Condition	
		2.4.1	Evaporation into Vacuum	
		242	Evaporation Coefficient	

digitalisiert durch

x Contents

		2.4.3	Condensation Coefficient and KBC in Weak Condensation States	5:		
	2.5	Asvm	ptotic Analysis of Weak Condensation State of Methanol	5		
		2.5.1	Problem and Formulation	5		
		2.5.2	Asymptotic Analysis for Small Knudsen Numbers	5		
		2.5.3	Boundary Condition for the Equations in Fluid-Dynamics			
			Region	6		
		2.5.4	Condensation Coefficient as a Linear Function of Mass Flux	6		
	2.6		ism on Hertz-Knudsen-Langmuir and Schrage Formulas	6		
	Refe			6		
3	Methods for the Measurement of Evaporation and Condensation					
			s	7		
	3.1		w of α_e , α_c , KBC, and Gaussian–BGK Boltzmann Equation	7		
		3.1.1	Definitions of α_e and α_c	7		
		3.1.2	Extension of Monatomic Version of KBC	_		
			to Polyatomic One	7		
		3.1.3	KBC Expressed by Net Mass Flux Measured at the			
			Interface	7		
		3.1.4	Gaussian-BGK Boltzmann Equation in Moving			
			Coordinate System	7		
	3.2		Tube Method for Measurement of Condensation Coefficient.	7		
		3.2.1	Principle of Shock Tube Method	7		
		3.2.2	Characteristics of Film Condensation at Endwall behind			
			Reflected Shock Wave	8		
		3.2.3	Mathematical Modeling of Film Condensation on Shock			
			Tube Endwall	8		
		3.2.4	Boundary Condition at Infinity in Vapor	8		
		3.2.5	Heat Conduction in Liquid Film and Shock Tube Endwall	8		
		3.2.6	Initial Conditions	8		
	3.3		Tube	8		
		3.3.1	Schematic and Performance of Shock Tube	8		
		3.3.2	Effect of Noncondensable Gases on Liquid Film Growth	8		
		3.3.3	Effect of Association of Molecules on Vapor State	8		
	3.4	-	al Interferometer	8		
		3.4.1	Theory of Optical Interferometer	8		
		3.4.2	Method of Optical Data Analysis	9		
	3.5		rties of Adsorbed Liquid Film on Optical Glass Surface	9		
		3.5.1	Treatment of Optical Glass	9		
		3.5.2	Thickness of Temporarily Adsorbed Liquid Film	9		
		3.5.3	Refractive Index of Initially Adsorbed Liquid Film	9		
	3.6	Deduc	etion of Condensation Coefficient	9		
		3.6.1	Typical Output Examples of Energy Reflectance	9		
		3.6.2	Time Changes of Liquid Film Thickness	9		

Contents xi

		3.6.3 3.6.4	Propagation Process of Shock Waves Time Changes of Macroscopic Quantities	100			
			and Condensation Coefficient	101			
		3.6.5	Values of α_e and α_c for Water and Methanol	103			
	3.7	Sound	Resonance Method for Measurement				
		of Eva	poration Coefficient	106			
	Refe		•	108			
4	Vapor Pressure, Surface Tension, and Evaporation Coefficient						
	for l	Nanodr	oplets	111			
	4.1		icance of Molecular Dynamics Analysis for Nanodroplets	111			
	4.2	Metho	d of MD Simulations	113			
	4.3	Comp	utational Method of Pressures	115			
	4.4	Equili	brium States of Nanodroplets and Planar Liquid Films	116			
		4.4.1	General Explanation	116			
		4.4.2	Density Distributions	116			
		4.4.3	Pressure Distributions	120			
		4.4.4	Differentiability of Normal Pressure with Respect				
			to Radial Coordinate	123			
		4.4.5	Laplace Equation and Surface Tension	124			
		4.4.6	Kelvin Equation	126			
		4.4.7	Tolman Equation	129			
	4.5	Mass 7	Transport Across Nanodroplet Surface	130			
		4.5.1	Problem Statement	130			
		4.5.2	Evaporation and Condensation Coefficients, and Mass				
			Transfer Rate	131			
		4.5.3	Vacuum Evaporation Simulations	132			
		4.5.4	Mass Fluxes and Evaporation Coefficient	133			
	Refe	erences	•	140			
5		amics o	of Spherical Vapor Bubble	143			
	5.1		dynamic Definition of Interface	143			
	5.2	Kinem	natics of Interface	145			
		5.2.1	Interface Velocity	145			
		5.2.2	Interface Curvature	145			
		5.2.3	Time Variation of Area of Surface Element	147			
		5.2.4	Surface Divergence	150			
		5.2.5	Equilibrium Thermodynamics of the Interface	152			
	5.3	Genera	al Conservation Equation at Interface	153			
		5.3.1	Conservation Equations in Bulk Fluids	153			
		5.3.2	Conservation Equation in Frame Moving with Interface	154			
		5.3.3	Integration Form of Conservation Equation	155			
		5.3.4	Flux Balance on Interface	156			
		5.3.5	Conservation of Mass on Interface	157			

xii Contents

	5.3.6	Conservation of Momentum on Interface	159
	5.3.7	Conservation of Energy on Interface	161
5.4	Spher	ical Vapor Bubble	162
	5.4.1	Governing Equations for Spherical Bubble	163
	5.4.2	Simplification	165
	5.4.3	Boundary Conditions	168
5.5	Practi	cal Description of Bubble Motion	171
	5.5.1	Flow Fields in Liquid	172
	5.5.2	Uniform Pressure in Bubble Interior	172
	5.5.3	Temperature, Pressure, and Velocity Fields	174
	5.5.4	Boundary Conditions of Temperature Field	175
5.6	Tempe	erature Field of Bubble Exterior	176
	5.6.1	Lagrangian Formulation	176
	5.6.2	Transformation of Variables	177
	5.6.3	Laplace Transform of Heat Equation	179
	5.6.4	Inverse Laplace Transform of Heat Equation	181
	5.6.5	Liquid Temperature at Bubble Wall	186
	5.6.6	Gradient of Liquid Temperature at Bubble Wall	188
5.7	•	erature Field of Bubble Interior	189
	5.7.1	Adiabatic Solution	190
	5.7.2	Lagrangian Formulation	191
	5.7.3	Boundary Layer Solution	191
	5.7.4	Solution of Heat Equation	193
	5.7.5	Pressure and Velocity	196
5.8	Struct	ure of Mathematical Model	197
5.9		e Expansion with Uniform Interior	199
	5.9.1	Assumptions	199
	5.9.2	Governing Equations and Conditions	200
	5.9.3	Heat Equation for Liquid	202
	5.9.4	Solution of Heat Equation	203
	5.9.5	Asymptotic Growth of Vapor Bubble	206
	5.9.6	Bubble Motion Coupled with Heat Conduction	208
Refe	rences		209
	_		
		Vectors, Tensors, and Their Notations	211
		, Vector, and Tensor	211
A.2	Einste	in Summation Convention	212
Append	ix B	Equations in Fluid Dynamics	215
B.1		rvation Equations	215
B.2	Conse	rvation Equations in Component Forms	218

xiii

Appendix C Supplements to Chapter 5	219
C.1 Generalized Stokes Theorem	219
C.2 Characteristic Time of Heat Conduction	221
C.3 Abel's Integral Equation	223
Index	225