TABLE OF CONTENTS

PRE	EFACE	X
ACI	KNOWLEDGEMENTS	xii
SYN	MBOLS	X
Cha	pter 1	
	RODUCTION	1
1.1	Numerical analysis of plated structures	
1.2	Purpose of this book	2
1.3	Structure of this book	3
Cha	apter 2	
ARI	EA OF APPLICATION	5
2.1	Typical rectangular plates	5
	2.1.1 Introduction	5
	2.1.2 Tolerances	5
	2.1.3 Structural behaviour and classification	7
2.2	Arbitrary geometries and boundary conditions	Š
Cha	pter 3	
<u>CAI</u>	LCULATION METHODS AND SOFTWARE REQUIREMENTS	5 11
3.1	Overview of calculation methods	11
3.2	Linear analysis (LA)	13
3.3	Linear buckling analysis (LBA)	13
3.4	Material nonlinear analysis (MNA)	16
3.5	Geometric nonlinear analysis including imperfections (GNIA)	17
3.6	Geometric and material nonlinear analysis including imperfections	
	(GMNIA)	18
3.7	Software requirements	20
Cha	pter 4	
MO	DELLING (PREPROCESSING)	2 3
4.1	Material properties	23
42	Mash discretisation	25

4.3	Boundary conditions	27
	4.3.1 General	27
	4.3.2 Definition of supports	28
	4.3.3 Definition of loads	40
	4.3.3.1 Load-controlled analysis	40
	4.3.3.2 Displacement controlled analysis	44
4.4	Imperfections	45
	4.4.1 Types of imperfections	45
	4.4.2 Geometric imperfections	47
	4.4.3 Residual stresses	49
	4.4.4 Equivalent geometric imperfections	50
Cha	pter 5	
SOL	UTION SETTINGS	<u>53</u>
5.1	General	53
5.2	Importance of large deformations	54
5.3	Prestress effect	54
5.4	Solver selection	55
5.5	Setting the convergence criterion	57
5.6	Time increment settings	57
5.7	Overcome convergency problems	58
5.8	Solution printout	60
Cha	pter 6	
EVA	LUATION AND VERIFCATION (POSTPROCESSING) AND	
INT	ERPRETATION OF RESULTS	61
6.1	Evaluation	61
	Verification	62
6.3	Interpretation	64
	pter 7	
	ICHMARK EXAMPLES	<u>67</u>
7.1	Longitudinally stiffened panel under normal force	67
	7.1.1 Overview	67
	7.1.2 Experimental test	67
	7.1.3 Imperfection	69

	7.1.4 Element selection	73
	7.1.5 Material model	74
	7.1.6 Comparing the results from the tests and the modelling	75
7.2	Longitudinally stiffened panel subjected to shear force	77
	7.2.1 Introduction	77
	7.2.2 Geometrical and material data	79
	7.2.3 Support condition and loading	82
	7.2.4 Imperfections	82
	7.2.5 Results	84
7.3	Web in bending with weak stiffeners	86
	7.3.1 Laboratory tests	86
	7.3.2 Numerical model development	88
	7.3.3 Applied imperfections	90
	7.3.4 Comparison of test and numerical results	92
7.4	Transversally stiffened steel plate girder subjected to patch loading	94
	7.4.1 Experimental test	95
	7.4.2 Assessment of numerical assumptions	97
	7.4.3 Assessment of geometrical and structural conditions	100
	apter 8	
	ORKED EXAMPLES	105
8.1	Bottom plate with trapezoidal stiffeners	105
	8.1.1 Introduction	105
	8.1.2 Finite element model and boundary conditions	106
	8.1.3 Linear structural analysis (LA) and linear buckling analysis	
	(LBA)	108
	8.1.4 Nonlinear buckling analysis including imperfections	
	(GMNIA)	110
	8.1.5 Comparison with other methods from EN 1993-1-5	113
8.2	Web subjected to shear and bending	115
	8.2.1 Introduction	115
	8.2.2 Geometric properties of the model	117
	8.2.3 Materials	118
	8.2.4 Supports	119
	8.2.5 Loads	119
	8.2.6 Linear buckling analysis	119

8.2.	7 Initial imperfections	122
8.2.8	B Main results of nonlinear analysis	124
8.3 Patc	h loading verification of a box girder bridge	127
8.3.	1 Introduction	127
8.3.	2 Cross section dimensions	129
8.3.3	3 Static scheme, loads and supports	132
8.3.4	4 Materials	133
8.3.	5 Linear buckling analysis	134
8.3.0	5 Initial imperfections	135
8.3.	Nonlinear buckling analysis including imperfections	135
8.3.8	Interaction curve bending moment M and reaction R	137
SUMMAI	RY AND CONCLUSIONS	139
BIBLIOG	RAPHIC REFERENCES	141