Contents

Preface ---- V

1	Introduction —— 1
2	Structure and Properties of Water —— 8
2.1	Structure of Water —— 8
2.2	Properties of Water —— 11
2.2.1	Density —— 11
2.2.2	Phase Diagram – Melting Point and Boiling Point —— 14
2.2.3	Energetic Quantities —— 17
2.2.4	Viscosity —— 19
2.2.5	Surface Tension —— 20
2.2.6	Relative Permittivity —— 25
2.3	Water as a Solvent —— 26
2.4	Problems —— 29
3	Concentrations and Activities —— 31
3.1	Introduction —— 31
3.2	Concentrations —— 31
3.3	Conversion of Concentration Units —— 36
3.3.1	Introduction and Basic Equations —— 36
3.3.2	Conversion of Mass Concentration —— 36
3.3.3	Conversion of Molar Concentration —— 37
3.3.4	Conversion of Molality —— 38
3.3.5	Conversion of Mole Fraction —— 39
3.3.6	Conversion of Mass Fraction —— 39
3.4	Element-Related Concentrations —— 40
3.5	Gas-Phase Concentrations —— 42
3.6	Electroneutrality Condition and Ion Balance —— 43
3.7	Hardness as a Specific Concentration Measure — 44
3.8	Activities and Activity Coefficients — 49
3.9	Problems —— 55
4	Colligative Properties —— 56
4.1	Introduction —— 56
4.2	Vapor Pressure Lowering —— 56
4.3	Boiling Point Elevation and Freezing Point Depression —— 58
4.4	Osmotic Pressure —— 60
4.5	Colligative Properties of Real Solutions — 62
4.6	Problems —— 63

5	The Chemical Equilibrium: Some General Aspects —— 64
5.1	Introduction —— 64
5.2	Law of Mass Action and Equilibrium Constants — 64
5.3	Conventions on the Use of Concentration Measures in the Law of
	Mass Action —— 66
5.4	Gibbs Energy of Reaction, Equilibrium Constants, and Reaction
	Quotients — 67
5.5	Estimation of Equilibrium Constants —— 68
5.6	Temperature Dependence of Equilibrium Constants — 69
5.7	Equilibrium Constants of Reverse and Overall Reactions —— 71
5.8	Problems —— 72
6	Gas-Water Partitioning — 74
6.1	Introduction —— 74
6.2	Henry's Law —— 75
6.3	Alternative Formulations of Henry's Law —— 77
6.4	Estimation of Henry's Law Constants for Volatile Substances —— 79
6.5	Open and Closed Systems —— 79
6.6	Solubilities of Atmospheric Gases in Water —— 81
6.7	Calculation of Equilibrium Concentrations in Closed Systems —— 82
6.8	Coupling of Gas—Water Partitioning and Chemical Reaction —— 84
6.9	Problems —— 86
7	Acid/Base Equilibria 88
7.1	Introduction —— 88
7.2	Brønsted's Acid/Base Theory —— 88
7.3	Water as an Acid/Base System —— 91
7.4	Protolysis of Acids and Bases —— 93
7.5	pH of Aqueous Solutions of Acids, Bases, and Salts —— 97
7.5.1	pH of Acid Solutions —— 97
7.5.2	pH of Base Solutions —— 100
7.5.3	pH of Salt Solutions —— 100
7.5.4	Buffer Systems —— 105
7.6	Degree of Protolysis and Acid/Base Speciation —— 107
7.6.1	Monoprotic Acids —— 107
7.6.2	Polyprotic Acids —— 110
7.7	Carbonic Acid —— 112
7.7.1	Relevance —— 112
7.7.2	Speciation of Carbonic Acid —— 112
7.7.3	Determination of the Carbonic Acid Species by Acid/Base
	Titrations —— 114

7.7.4	General Definitions of the Alkalinities and Acidities on the Basis of Proton Balances —— 121
7.7.5	The Conservative Character of Alkalinity —— 122
7.7.6	Determination of Dissolved Inorganic Carbon — 123
7.7.7	pH of Pristine Rain Water —— 125
7.7.8	Photosynthesis and Carbonic Acid System —— 126
7.8	Problems —— 128
8	Precipitation/Dissolution Equilibria —— 130
8.1	Introduction —— 130
8.2	The Solubility Product —— 130
8.3	Solubility Product and Solubility —— 132
8.3.1	Relationship Between Solubility Product and Solubility —— 132
8.3.2	Influence of the Ionic Strength on the Solubility —— 134
8.3.3	Influence of Side Reactions on the Solubility —— 136
8.4	Assessment of the Saturation State of a Solution —— 138
8.5	Problems —— 139
9	Calco-Carbonic Equilibrium —— 141
9.1	Introduction —— 141
9.2	Basic Equations —— 142
9.3	Graphical Representation of the Calco-Carbonic Equilibrium:
	Tillmans Curve —— 144
9.4	Assessment of the Calcite Saturation State —— 148
9.5	Outlook: Assessment of the Calcite Saturation State Under
	Consideration of Complex Formation —— 153
9.6	Special Case: Fixed CO ₂ Partial Pressure —— 154
9.7	Problems —— 158
10	Redox Equilibria —— 159
10.1	Introduction —— 159
10.2	Estimation of Oxidation Numbers (Oxidation States) —— 159
10.3	Redox Equilibria: Definitions and Basic Concepts —— 162
10.4	Half-Reactions —— 163
10.4.1	Writing Equations for Redox Half-Reactions —— 163
10.4.2	Law of Mass Action and Redox Intensity —— 165
10.4.3	Redox Intensity Versus Redox Potential —— 171
10.4.4	Special Case: Redox Reactions with Dissolved Gases —— 172
10.4.5	Crossover Points Between Predominance Areas of Reduced and
	Oxidized Species —— 174
10.4.6	Speciation as a Function of pe —— 176
10.4.7	Water as a Redox System —— 178

10.5	Construction of pe-pH Diagrams —— 180
10.5.1	Introduction —— 180
10.5.2	Boundary Lines for Pure Acid/Base Systems —— 181
10.5.3	Boundary Lines for Complex Acid/Base Systems —— 181
10.5.4	Boundary Lines for Pure Redox Systems with Oxidant and
	Reductant in Dissolved Form —— 182
10.5.5	Boundary Lines for pH-Dependent Redox Systems with Oxidant
	and Reductant in Dissolved Form —— 183
10.5.6	Boundary Lines for pH-Dependent Redox Systems Where Only
	One Partner Occurs in Dissolved Form —— 183
10.5.7	Example: The pe-pH Diagram of Iron —— 184
10.5.8	Example: The pe-pH Diagram of Sulfur —— 191
10.6	Complete Redox Reactions —— 193
10.6.1	Basic Relationships —— 193
10.6.2	Redox Reactions Within the Global Carbon Cycle —— 200
10.6.3	Further Oxidation Reactions Mediated by Microorganisms —— 203
10.7	Problems —— 204
11	Complex Formation —— 206
11.1	Introduction —— 206
11.2	Ligands in Aquatic Systems —— 208
11.3	Equilibrium Relationships and Constants —— 210
11.4	Strength of Complexation: Monodentate Versus Polydentate
	Ligands —— 212
11.5	Complex Formation and Solubility —— 214
11.6	Hydrolysis of Hydrated Metal Ions —— 215
11.7	Speciation of Metal lons —— 217
11.7.1	Introduction —— 217
11.7.2	Speciation of Dissolved Metal Ions at Constant Total Metal
	Concentration —— 218
11.7.3	Speciation in the Presence of a Solid That Determines the Liquid-
	Phase Concentrations —— 223
11.8	Problems —— 226
12	Sorption —— 229
12.1	Introduction —— 229
12.2	Geosorbents —— 230
12.3	Sorption Isotherms —— 231
12.3.1	General Considerations —— 231
12.3.2	Isotherm Equations —— 232
12.3.3	Distribution Between Liquid and Solid Phase —— 236
12.4	Sorption Onto Charged Surfaces — 237

12.4.1	Introduction —— 237	
12.4.2	Mathematical Description of the Surface Protonation/	
	Deprotonation —— 239	
12.4.3	Modeling of Ion Sorption —— 245	
12.5	Sorption of Organic Species Onto Organic Material — 248	
12.6	Sorption-Influenced Subsurface Transport of Dissolved	
	Substances —— 253	
12.7	Problems —— 255	
13 S	olutions to the Problems —— 256	
A Append	lix 311	
A.1	Some Important Constants —— 311	
A.2	Some Important Logarithm Rules —— 311	
A.3	List of Important Equations —— 312	
Nomenclature —— 327		
Bibliogra	phy —— 333	
Index	- 335	