Contents

Preface	xiii	
Author	Biography	xı

1	Introduction to Simultaneous Mass Transfer and Chemical
	Reactions in Engineering Science 1
1.1	Gas-Liquid Reactions 1
1.1.1	Simultaneous Biomolecular Reactions and Mass Transfer 2
1.1.1.1	The Biomedical Environment 2
1.1.1.2	The Industrial Chemistry and Chemical Engineering Environment 3
1.1.2	Conclusions 6
1.1.3	Summary 6
1.2	The Modeling of Gas-Liquid Reactions 7
1.2.1	Film Theory of Mass Transfer 7
1.2.2	Surface Renewal Theory of Mass Transfer 9
1.2.3	Absorption into a Quiescent Liquid 11
1.2.3.1	Absorption Accompanied by Chemical Reactions 13
1.2.3.2	Irreversible Reactions 13
1.2.4	Absorption into Agitated Liquids 17
1.2.4.1	An Example of a First-Order Reaction 19
1.2.4.2	The Film Model 20
1.3	The Mathematical Theory of Simultaneous Mass Transfer and Chemical
	Reactions 20
1.3.1	Physical Absorption 21
1.3.2	Chemical Absorption 21
1.3.2.1	Preliminary Remarks on Simultaneous Mass Transfer (Absorption) with
	Chemical Reactions 21
1.3.2.2	Some Solutions to the Mathematical Models of the Theory of
	Simultaneous Mass Transfer and Chemical Reactions 22
1.3.2.3	Approximate Closed Form Solutions 23
1.3.3	Numerical Solutions 29
1.4	Diffusive Models of Environmental Transport 30
	Further Reading 30

2	Data Analysis Using R Programming 31
2.1	Data and Data Processing 32
2.1.1	Introduction 32
2.1.2	Data Coding 33
2.1.2.1	Automated Coding Systems 34
2.1.3	Data Capture 34
2.1.4	Data Editing 35
2.1.5	Imputations 35
2.1.6	Data Quality 36
2.1.7	Quality Assurance 36
2.1.8	Quality Control 36
2.1.9	Quality Management in Statistical Agencies 36
2.1.10	Producing Results 37
2.2	Beginning R 38
2.2.1	R and Statistics 38
2.2.2	A First Session Using R 40
2.2.3	The R Environment (This is Important!) 52
2.3	R as a Calculator 54
2.3.1	Mathematical Operations Using R 54
2.3.2	Assignment of Values in R, and Computations Using Vectors and
	Matrices 56
2.3.3	Computations in Vectors and Simple Graphics 57
2.3.4	Use of Factors in R Programming 57
2.3.4.1	Body Mass Index 59
2.3.5	Simple Graphics 59
2.3.6	x as Vectors and Matrices in Statistics 62
2.3.7	Some Special Functions that Create Vectors 64
2.3.8	Arrays and Matrices 65
2.3.9	Use of the Dimension Function dim() in R 65
2.3.10	Use of the Matrix Function matrix() in R 66
2.3.11	Some Useful Functions Operating on Matrices in R: colnames,
	rownames, and t (for transpose) 66
2.3.12	NA "Not Available" for Missing Values in Datasets 67
2.3.13	Special Functions that Create Vectors 68
2.4	Using R in Data Analysis in Human Genetic Epidemiology 73
2.4.1	Entering Data at the R Command Prompt 73
2.4.1.1	Creating a Data-Frame for R Computation Using the EXCEL
	Spreadsheet (on a Windows Platform) 73
2.4.1.2	Obtaining a Data Frame from a Text File 75
2.4.1.3	Data Entry and Analysis Using the Function data.entry() 77
2.4.1.4	Data Entry Using Several Available R Functions 77
2.4.1.5	Data Entry and Analysis Using the Function scan() 79
2.4.1.6	Data Entry and Analysis Using the Function Source() 81
2417	Data Entry and Analysis Using the Spreadsheet Interface in R

2.4.1.8	Human Genetic Epidemiology Using R: The CRAN Package Genetics 83
2.4.2	The Function list() and the Construction of data.frame() in R 84
2.4.3	Stock Market Risk Analysis 87
2.4.3.1	Univariate, Bivariate, and Multivariate Data Analysis 87
2.4.3.1 2.A	Appendix. Documentation for the Plot Function 109
2.A.1	Description 109
2.A.2	Usage 109
2.A.3	Arguments 109
2.A.4	Details 109
2.A.5	See Also 110
2.7 1.3	Further Reading 110
3	A Theory of Simultaneous Mass Transfer and Chemical
	Reactions with Numerical Solutions 111
3.1	Introduction 111
3.1.1	A Classical Experimental Study of Simultaneous Absorption of Carbon
	Dioxide and Ammonia in Water 111
3.1.2	Physical Absorption 112
3.1.2.1	Results 113
3.2	Biomolecular Reactions 114
3.2.1	Occurrences of Simultaneous Biomolecular Reactions and Mass Transfer
	Are Common in Many Biomedical Environments 114
3.3	Some Examples in Chemical Engineering Sciences 115
3.3.1	Simultaneous Chemical Reactions and Mass Transfer 115
3.4	Some Models in the Diffusional Operations of Environmental Transport
	Unaccompanied by Chemical Reactions 116
3.4.1	Diffusion Models of Environmental Transport 116
3.4.2	Advection-Diffusion Models of Environmental Transport 116
3.5	The Concept of Diffusion 116
3.5.1	Publishers' Remarks 116
3.5.2	Fick's Laws of Diffusion 117
3.5.2.1	Fick's First Law of Diffusion (Steady-State Law) 117
3.5.2.2	Fick's Second Law of Diffusion 119
3.5.3	Derivation of Fick's Laws of Diffusion 120
3.5.3.1	Remarks: Additional Remarks on Fick's Laws of Diffusion 120
3.5.3.2	Example Solution in One Dimension: Diffusion Length 122
3.6	The Concept of the Mass Transfer Coefficient 122
3.7	Theoretical Models of Mass Transfer 123
3.7.1	Nernst One-Film Theory Model and the Lewis-Whitman Two-Film
	Model 123
3.7.1.1	Gas Transfer Rates 123
3.7.1.2	The Nernst One-Film Model 123
3.7.1.3	Mass Transfer Coefficients 123
3711	The Lewis-Whitman Two-Film Model 124

Contents

×

3.7.1.5	The Two-Film Model 124
3.7.1.6	Single-Film Control 126
3.7.1.7	Applications 126
3.7.2	Higbie's Penetration Theory Model 127
3.7.3	Danckwerts' Surface Renewal Theory Model 129
3.7.4	Boundary Layer Theory Model 131
3.7.4.1	Fluid-Fluid Interfaces 131
3.7.4.2	Fluid-Solid Interfaces 131
3.7.4.3	Example: Prandtl's Experimental Mass Transfer from a Flat Plate 131
3.7.5	Mass Transfer Under Laminar Flow Conditions 132
3.7.6	Mass Transfer Past Solids Under Turbulent Flow 132
3.7.7	Some Interesting Special Conditions of Mass Transfer 132
3.7.7.1	Equimolar Counter-Diffusion of A and B $(N_A = -N_B)$ 132
3.7.7.2	For Liquid-Phase Diffusion 133
3.7.7.3	Conversions Formulas for Mass Transfer Coefficients in Different
	Forms 134
3.7.8	Applications to Chemical Engineering Design 134
3.7.8.1	Designing a Packed Column for the Absorption of Gaseous CO ₂ by a
	Liquid Solution of NaOH, Using the Mathematical Model of
	Simultaneous Gas Absorption with Chemical Reactions 134
3.7.8.2	Calculation of Packed Height Requirement for Reducing the Chlorine
	Concentration in a Chlorine–Air Mixture 141
3.8	Theory of Simultaneous Bimolecular Reactions and Mass Transfer in
	Two Dimensions 144
3.8.1	Numerical Solutions of a Model in Terms of Simultaneous Semi-linear
	Parabolic Differential Equations 144
3.8.1.1	Theory of Simultaneous Bimolecular Reactions and Mass Transfer in
202	Two Dimensions 144
3.8.2	Existence and Uniqueness Theorems of First-Order Linear Ordinary
2021	Differential Equations 174
3.8.2.1	Differential Equations 174
3.8.2.2	Contraction Mappings on a Banach Space 174
3.8.2.3 3.8.3	Application to Differential Equations 177
3.8.3	An Existence Theorem of the Governing Simultaneous Semi-linear Parabolic Partial Differential Equations 183
3.8.4	A Uniqueness Theorem of the Governing Simultaneous Semi-linear
3.6.4	Parabolic Partial Differential Equations 188
3.9	Theory of Simultaneous Bimolecular Reactions and Mass Transfer in
3.9	Two Dimensions: Further Cases of Practical Interests 192
3.9.1	Case of Stagnant Film of Finite Thickness – Second-Order Irreversible
3.7.1	Reactions 192
3.9.2	Case of Unsteady-State Absorption in the Stagnant Liquid – Slow
3.3.2	First-Order Reaction (S&P 325, 328) 196
3.9.3	Simultaneous Absorption of Two Gases in a Liquid in Which Each Then
	Reacts With a <i>Third</i> Component in the Liquid 198

3.9.3.1	Mathematical Modeling 199
3.9.3.2	Analysis of the Model: $A + B \rightarrow 201$
3.9.3.3	Discussions 201
3.9.3.4	Further Theoretical Analysis 202
3.9.4	Simultaneous Absorption of Two Gases in a Liquid in Which Each Then Reacts with a <i>Third</i> Component in the Liquid 210
3.9.4.1	The Mathematical Model 210
3.9.4.2	Analysis of the Model 210
3.9.4.3	Boundary Conditions 212
3.9.4.4	Mass Transfer Coefficients 212
3.9.5	Cases of Slow First-Order Reactions 213
3.9.5.1	Case of Unsteady-State Absorption in the Stagnant Liquid 213
3.9.5.2	Case of Unsteady-State Absorption in the Stagnant Liquid - Slow
	First-Order Reactions 216
3.10	Further Theoretical Analysis 218
	Further Reading 219
4	Numerical Worked Examples Using R for Simultaneous Mass Transfer and Chemical Reactions 221
4.1	Advection and Convection 221
4.1.1	Advection 221
4.1.2	Advection 221 Advection vs. Convection 222
4.1.2.1	Meteorology 222
4.1.2.2	The Mathematics of Advection 222
4.1.2.3	The Advection Equation 223
4.1.2.4	The Advection Operator in the Incompressible Navier–Stokes
т.1.2.т	Equations 224
4.2	Worked Examples 224
4.3	Partial Differential Equations 386
4.4	A Parabolic PDE 387
4.4.1	Steady-State Solution 388
4.4.2	The Method of Lines 389
	Further Reading 390
5	More Numerical Worked Examples Using R for Simultaneous Mass Transfer and Chemical Reactions 391
5.1	Introduction 391
5.2	Advection 391
5.2.1	Advection vs. Convection 392
5.2.1.1	Meteorology 392
5.2.1.2	The Mathematics of Advection 392
5.2.1.3	The Advection Equation 393
5.2.1.4	Solving the Advection Equation 393
5.2.1.5	The Advection Operator in the Incompressible Navier–Stokes
J.2.1.J	Equations 394

xii	Contents	
	5.3	Solving Partial Differential Equations Using the R Package
		ReacTran 395
	5.3.1	Worked Examples 395
	5.4	Some Final Remarks on Solving Partial Differential Equations Using the
		R Package ReacTran 555
	5.4.1	Partial Differential Equations 555
	5.4.2	A Parabolic PDE 557
	5.4.2.1	Steady-State Solution 558
	5.4.2.2	The Method of Lines 559
		Further Reading 560
	6	Solving Partial Differential Equations, Generally Applicable to
		Modeling Simultaneous Mass Transfer and Chemical
		Reactions, Using the R Package ReacTran 561
	6.1	Partial Differential Equations (PDE) 561
	6.2	A Parabolic PDE 562
	6.3	Steady-State Solution 563
	6.3.1	The Method of Lines 565
	6.3.2	A Hyperbolic PDE 566
	6.4	The General 3D Advective–Diffusive Transport PDE 568
	6.4.1	An Elliptic PDE 568
	6.5	The General 3D Advective–Diffusive Transport PDE 577
	6.5.1	The Advection Equation 577
	6.5.2	Solving the Advection Equation 578
	6.5.3	The Advection Operator in the Incompressible Navier-Stokes
		Equations 579
		Further Reading 641
		References 643
		Further Reading 647

Index 649