

1	Introduction to Brain Development: Why do We Need so Many Nerve Cells?	1
1.1	Neurons and Glia in the Central Nervous System	3
1.2	What Happens During Brain Development?	4
1.3	Evolutionarily Old Brain Parts are Simpler in Structure than the Neocortex	6
1.4	What Distinguishes the Left from the Right Brain?	8
1.5	Brain Development in Childhood and Adolescence	9
1.6	The Child's Brain is Enormously Plastic and can Still Heal	10
1.7	Is a Large Brain "Smarter" than a Small One?	11
1.8	Absolute and Relative Brain Weight	14
1.9	With the Second Evolutionary Leap, Our Brain Reaches its Maximum Size	16
1.10	Neural Stem Cells Remain Capable of Dividing for a Long Time	18
1.11	The Frontal Lobe is Especially Important for Higher Brain Functions	19
1.12	The Prefrontal Cortex Encodes Human Specific Properties	21
1.13	Brain Performance in Comparison	23
	Further Reading	25

2 Aging and Neurodegenerative Diseases: Why do Nerve Cells Die?	27
2.1 The Normal Aging Process	28
2.1.1 Mechanisms of Cellular Aging	30
2.1.2 Neuronal Cell Death	41
2.1.3 Blood Supply of the Aging Brain	45
2.2 Parkinson's Disease	48
2.2.1 General Pathomechanisms	48
2.2.2 Special Morphology of Affected Neurons	56
2.2.3 Specific Causes of Parkinson's Disease	60
2.2.4 Alpha-synuclein: A Key Protein in Parkinson's Disease	63
2.2.5 The Prion Theory of Parkinson's Disease	67
2.3 Dementia and Alzheimer's Disease	71
2.3.1 How Does Alzheimer's Disease Manifest Itself?	72
2.3.2 General Pathomechanisms	74
2.3.3 The Disturbed Protein Homeostasis in Alzheimer's Disease	80
2.3.4 Tau Pathology	82
2.3.5 The Prion Theory in Alzheimer's Disease	88
2.4 Inflammatory Components of Alzheimer's and Parkinson's Disease	91
2.5 Viral Infections in Neurodegenerative Diseases	94
Further Reading	97
3 Saving or Replacing Nerve Cells: Which Strategy is More Successful?	105
3.1 Parkinson's Disease	108
3.1.1 Pharmacological Therapy	108
3.1.2 Surgical and physical therapy	109
3.1.3 Therapy with Neurotrophic Factors	111
3.1.4 Therapy with Antisense Oligonucleotides	114
3.1.5 Alpha-synuclein Aggregation Inhibitors and Specific Immunotherapy	117
3.1.6 Stem Cell Therapy	117
3.1.7 Other Causal Therapeutic Approaches	119
3.2 Dementia and Alzheimer's Disease	120
3.2.1 Cholinergica	120
3.2.2 Therapy with Secretase Inhibitors	121
3.2.3 Therapy with Neurotrophic Factors	122

	Contents	xiii
3.2.4 Immunotherapy	123	
3.2.5 Stem Cell Therapy	125	
3.2.6 Other Causal Therapeutic Approaches	125	
3.2.7 Symptomatic Therapy	127	
3.2.8 Which Measures Promise the most Success?	129	
3.3 Diagnosis and Therapy of Neuronal Degeneration—quo vadis?	130	
Further Reading	134	
Glossary	137	