Contents

_					
Р	rei	ra	c	Α.	 ν

Part I: 🗛	lvanced	Process	Control	l —— 1
-----------	---------	---------	---------	--------

1	Complex and nonconventional control systems —— 3	
1.1	Cascade control systems —— 3	
1.1.1	Processes in series —— 3	
1.1.2	Processes in parallel —— 10	
1.2	Feedforward control systems —— 15	
1.3	Ratio control systems —— 24	
1.4	Inferential control systems —— 27	
1.5	Selective control systems — 28	
Refere	nces —— 30	
2	Model predictive control —— 32	
2.1	Introduction —— 32	
2.2	MPC history —— 32	
2.3	Basics of MPC control strategy —— 34	
2.4	Types of MPC process models —— 42	
2.4.1	Impulse and step response models —— 43	
2.4.2	State-space models —— 49	
2.4.3	Time series models —— 49	
2.5	Predictions for MPC —— 50	
2.6	Optimization for MPC —— 60	
2.7	MPC tuning —— 64	
2.8	MPC stability —— 66	
2.9	Nonlinear MPC —— 68	
Refere	nces —— 71	
3	Fuzzy control —— 75	
3.1	Introduction —— 75	
3.2	Fuzzy sets —— 75	
3.3	Typical membership functions of the fuzzy sets —— 7	
3.4	Operations with fuzzy sets —— 81	
3.5	Fuzzy logic —— 83	
Refere	nces —— 91	

4	Optimal control systems —— 92
4.1	Steady-state optimal control —— 92
4.2	Dynamic optimal control of batch processes —— 102
4.3	Dynamic optimal control of continuous processes —— 111
Referen	ces —— 118
5	Multivariable control —— 119
5.1	Introduction —— 119
5.2	Multiloop control —— 120
5.2.1	Interaction among control loops —— 120
5.2.2	Pairing the control loops —— 126
5.2.3	Tuning the multiloop controllers —— 128
5.2.4	Decoupling interaction for multiloop control —— 129
5.3	Multivariable centralized control —— 133
Referen	ces —— 134
6	Plantwide control —— 136
6.1	Introduction —— 136
6.2	Premises of plantwide control —— 137
6.3	Designing the plantwide control strategy —— 139
Referen	ces —— 143
7	Linear discrete systems and Z transform —— 145
7.1	Introduction —— 145
7.2	Discrete systems described by input-output relationship —— 147
7.2.1	Sampling the continuous signals —— 147
7.2.2	Reconstruction of the continuous signals
	from their discrete values —— 153
7.2.3	Analytical description of the discrete systems —— 156
7.2.4	Z transform —— 160
7.2.5	Z transform of several simple functions —— 162
7.2.6	Inverse of the Z transform —— 163
7.2.7	Z transfer function —— 166
7.2.8	Z transfer function of the sampled system —— 168
7.2.9	Z transfer function of the interconnected systems —— 169
7.3	Discrete PID controller —— 171
7.4	Other forms of the discrete controllers —— 173
Referen	ces —— 175

Part II: Applied Process Engineering Control —— 177

8	Reaction unit control — 179
8.1	Introduction —— 179
8.2	Basic concepts of ideal continuous and batch units —— 179
8.3	Temperature control —— 182
8.3.1	Into thermal instability —— 182
8.3.2	Out of thermal instability —— 184
8.3.3	Temperature control in practice – continuous units —— 188
8.3.4	Temperature control in practice – batch units —— 195
8.4	Pressure control —— 200
8.5	Liquid level control —— 202
8.6	pH control —— 202
8.6.1	pH and titration curves —— 202
8.6.2	pH regulator characteristics — 206
8.6.3	Aspects of pH control in practice — 208
8.7	End-point detection and product-quality control —— 210
8.7.1	Some analyzer types —— 210
8.7.2	End-point detection reliability issues —— 211
8.8	Control structure design for reaction units —— 212
8.8.1	Principles of control structure design —— 212
8.8.2	Control structure design for homogeneous ideal units —— 218
8.8.3	Control structure design for some heterogeneous units —— 222
Referen	ces —— 230
9	Control of distillation processes —— 233
9.1	Economic constraints of distillation —— 233
9.2	The recovery factor —— 234
9.3	Lowering energy demand of distillation units —— 237
9.4	General control of continuous distillation columns —— 239
9.4.1	Mass and energy balance imposed control issues —— 239
9.4.2	Control solutions —— 249
9.5	Control issues of continuous distillation column dynamics —— 254
9.6	Control issues of batch distillation columns —— 259
Referen	ces —— 260

10 Control of absorption processes — 262 References — 269

11 Referen	Control of extraction processes —— 270 ces —— 278
12	Control of evaporation processes —— 279
Referen	ces — 286
13	Control of drying processes —— 287
13.1	Batch drying control —— 289
13.1.1	Conventional batch drying control — 289
13.1.2	Advanced batch drying control —— 292
13.2	Continuous adiabatic drying — 299
Referen	ices —— 302
14	Control of crystallization processes —— 303
14.1	The process of crystallization —— 303
14.2	Crystal size distribution control — 308
14.2.1	Model-free crystal size distribution control — 309
14.2.2	Model-based crystal size distribution control —— 313
Referen	ces — 316
15	Problems and exercises —— 318
15.1	Advanced process control —— 318
15.2	Applied process engineering control —— 322
Index –	— 325