

Contents

Preface – a short pitch for this book — V

1	Introduction – a thread through this book — 1
1.1	Motivation – window shopping for biotechnological products — 1
1.2	Bioprocess engineering – attempt at a definition — 7
1.3	Yeast production – a classic but instructive process — 8
1.4	The three columns of bioprocess engineering – what bioprocesses have in common — 11
1.5	Integration of sciences – acquiring knowledge on demand — 13
1.6	Characteristics of living cells – unique selling points from an engineering view — 14
1.7	Exercises, questions and suggestions — 16
2	Biosystems – microorganisms and other biocatalysts — 17
2.1	Motivation – a first bioengineering view of microbiology — 18
2.2	Diversity of biosystems – appearance in technical environments — 19
2.2.1	Enzymes – the universal toolbox for biocatalysis — 19
2.2.2	Bacteria – organisms for all seasons — 21
2.2.3	Archaea – the underestimated extremists — 23
2.2.4	Yeast – the workhorse of bioprocesses — 24
2.2.5	Filamentous fungi – the broad-spectrum chemists — 26
2.2.6	Microalgae – the solar cell factory — 27
2.2.7	Plant cells – slow but resourceful — 29
2.2.8	Animal cells – masters of protein decoration — 31
2.2.9	Organized communities – making rich booty as a consortium — 32
2.3	Cultivation conditions – environmental parameters to care about — 33
2.3.1	Primary nutritional groups — 33
2.3.2	Temperature — 34
2.3.3	Acidity and basicity — 37
2.3.4	High concentrations — 38
2.4	Bringing microorganisms to work – the concept of a ‘cell factory’ — 39
3	Media – supplying microorganisms with a comfortable environment and building blocks for growth — 41
3.1	Media – the material basis of the process — 41
3.2	Media design – starting from scratch — 42
3.3	Practical Application – a discussion of recipes from references — 48
3.4	Complex and technical media — 53
3.5	Additional aspects – mutual interactions between cells and medium — 58

3.6	The Good, the bad and the ugly – microorganisms as products — 61
3.7	Exercises, questions and suggestions — 64
4	Kinetics – finding quantities for bioprocess reactions — 66
4.1	Kinetics – the scaffold of reaction engineering — 66
4.2	Enzymes as basic components – determining kinetics — 68
4.3	The specific growth rate – describing growth by numbers — 76
4.4	The yield coefficient – combining substrate turnover and growth — 82
4.5	The batch process – the simplest form of a bioprocess — 86
4.6	Exercises, questions and suggestions — 88
5	Bioreactors – designing a home for the bioreaction — 92
5.1	Not only a vessel – for what a bioreactor is needed and what it can be — 92
5.2	Revisiting the stirred tank reactor – the most important issues to learn from chemical engineering — 94
5.3	Pneumatically driven bioreactors – a soft way of energy transfer — 104
5.4	Other types of bioreactors – translating demands into design — 108
5.5	Gas transfer – supplying microorganisms with gaseous compounds — 116
5.5.1	Transport processes – the journey of gases through the reactor — 117
5.5.2	Measuring gas transfer — 123
5.5.3	Alternative means of gas supply — 125
5.6	Exercises, questions and suggestions — 127
6	Not always so simple – the batch process reconsidered — 129
6.1	Formal kinetics – extrapolation from enzymatic reactions to cell growth — 129
6.2	Looking a step deeper – estimating aerobic growth yields from metabolic fluxes — 132
6.3	Aerobic growth – case study of heterotrophic plant cells — 134
6.4	Looking a step deeper – estimating anaerobic product yields from metabolic fluxes — 137
6.5	Anaerobic batch culture – case study of ethanol production — 138
6.6	Running example of yeast production – growth in batch processes — 142
6.7	Primary metabolites – products directly taken from central metabolism — 145
6.8	Serving mankind with basic needs – products needed in large amounts — 148
6.9	Conclusions for batch processes – dealing with pros and cons — 153
6.10	Questions and suggestions — 155

7	Little by little one goes far – the fed-batch process — 157
7.1	Setting up process equations – the formal deduction of a suitable feeding strategy — 158
7.2	Running example yeast production – an industrial feeding strategy — 161
7.2.1	Deviations from exponential – controlling physiology and obeying technical constraints — 161
7.2.2	The first step of downstream processing – relationship between cell separation and cell physiology — 165
7.3	Production of secondary metabolites – case study of penicillin production — 168
7.4	Production of recombinant proteins – the cell factory — 173
7.4.1	Different ways to get hold of desired proteins – an overview of protein expression systems — 174
7.4.2	High density cultivation – a specific fed-batch process for recombinant protein production — 176
7.4.3	Production of pharmaceutical proteins with <i>Kamagataella pfaffii</i> – employment of a high performance factory — 178
7.5	Conclusions for fed-batch processes – dealing with strengths and weaknesses — 180
7.6	Questions and suggestions — 181
8	Microalgae – the solar cell factory — 182
8.1	Becoming curious – current research promises — 182
8.2	Choosing from diversity – widely used microalgae for commercial bioprocesses — 183
8.3	Physiological principles – the unique features of the microalgal cell — 186
8.4	Light – the little bit different energy source — 191
8.5	Media for microalgae – a clear matter of fact — 194
8.6	Kinetics of photobioprocesses – how microalgae make use of the nonmiscible substrate — 197
8.7	Photobioreactors – the interface between algae and sunlight — 203
8.7.1	Starting from natural conditions – lakes and open ponds — 203
8.7.2	Flat plate reactors – the bubble column in an ‘enlightened’ guise — 206
8.7.3	Tubular reactors — 208
8.7.4	New developments and ideas — 210
8.8	Products and processes — 211
8.8.1	Products for food supplements, feed and aquaculture — 211
8.8.2	High value products — 213

8.8.3	Conversion of photon energy to chemical energy – producing fuels by microalgae — 216
8.9	Outlook — 218
8.10	Questions and suggestions — 219
9	Continuously operating bioprocesses – production under steady state conditions — 220
9.1	Setting up stationary balance equations – a good start in understanding process behavior — 221
9.2	Ethanol production in a continuous process – the window of operation — 226
9.3	Enzymatic processes – a simple but effective example for continuous bioprocess operation — 229
9.4	Biogas production via anaerobic digestion — 231
9.5	From minerals and particles – technical concepts for using chemolithotrophic microorganisms — 236
9.6	Complex molecular structures – how they influence the process — 243
9.7	Current discussion about continuous processes – motivation and obstacles — 247
9.8	Questions and suggestions — 248
10	Measuring principles – how to put an end to the blind flight — 250
10.1	Only a look through the keyhole – what measurement means for process understanding and optimization — 250
10.2	State of the art – overview of measurement at a standard reactor — 250
10.3	Physical parameters – adaptation from other fields of process technology — 253
10.4	Chemical parameters – employment of electrochemical effects — 254
10.5	Measuring biomass – the great unknown ‘X’ — 262
10.6	Compiling a construction kit for sensors – a general approach for biological sensors — 268
10.7	Questions and suggestions — 271
11	The practice of fermentation – a step by step guide through the workflow — 272
11.1	Structuring the reactor and the cultivation – zooming in from principle understanding to visibility of process details — 272
11.2	The reactor – a complex assembly of parts and modules — 273
11.3	Structuring the cultivation process – from planning to final data acquisition — 275
11.4	Media preparation — 277
11.5	Preculture preparation — 278

11.6	Reactor installation and setup — 279
11.6.1	Fermentation vessel setup — 280
11.6.2	Peripheral devices — 281
11.6.3	Sensor installation — 282
11.6.4	Autoclaving the bioreactor — 283
11.7	Managing the actual cultivation process — 287
11.8	Integration on the process level – how to include the fermentation into a whole process chain — 292
11.9	Questions and suggestions — 293
12	Modeling – art and handcraft of mathematically describing bioprocesses — 295
12.1	Modeling – what it might be and what it is good for — 295
12.2	Predator-prey model — 299
12.3	Linear networks – finding stationary flux equations — 302
12.4	Aerobic growth – setting up a first general model — 304
12.5	Anaerobic growth – traps and pitfalls — 307
12.6	Back to baker's yeast – more degrees of freedom — 310
12.7	Back to microalgae – a more spatial and hierarchical structure for subsystem definition — 315
12.8	Integration into society – the final proof of meaning — 319
12.9	Suggestions — 322
	Further Reading – still curious? — 323
	Acknowledgments – dedicated to all the people who supported the compilation of this book — 327
	Copyrights – pictures provided with courtesy and accepted with thanks — 333
	Index — 335