Content

1.	Int	trodu	ction	1		
2.	Lit	Literature Review				
	2.1.	Pri	nciples of Plant Safety and Fundamental Concepts regarding LDPE Process	2		
	2.1	1.1.	Technology and Safety Assessment of LDPE Process	3		
	2.2.	Pre	ssure Relief Systems in High-Pressure-Range	5		
	2.2	2.1.	Stationary/Transient Method for Experimental Investigation of Pressure Relief Process	6		
	2.2	2.2.	Thermo-Hydraulic and Two-Phase Flow Phenomena with Depressurization	7		
2.2.3.		2.3.	Valve Sizing Method for Real Gas Applications	9		
	2.2.4.		HNE-DS Method	10		
	2.2	2.5.	PC-SAFT Equation of States	11		
	2.3.	The	ermal Decomposition and Deflagration in the LDPE Process	13		
	2.3	3.1.	Safety-Related Operating Numbers for Plant Design	14		
	2.3	3.2.	Decomposition of Ethylene and Vinyl Acetate	17		
	2.3	3.3.	Reaction Mechanism of Soot Formation in Flames	19		
	2.4.	Siz	ing of Safety Devices in the LDPE Process	20		
	2.4	1 .1.	DuPont-Method	20		
3.	Ev	nerin	nental Realization	22		
	3.1.		up and Operation	22		
		l.1.	Configuration and Design of the Plant Units	22		
		1.2.	Dosage System for Liquid Components	24		
	3.1	1.3.	Current and Voltage Settings for Ignition Applications	25		
	3.2.	Fas	t Measurement Technique	26		
	3.2	2.1.	Temperature and Pressure Sensors	26		
	3.2	2.2.	Data Logging	27		
	3.3.	Ana	alytical Methods for Data Acquisition	28		
	3.3	3.1.	Differential Thermal Analysis (DTA)	29		
	3.3	3.2.	BET-Adsorption Measurement	29		
	3.3	3.3.	Mercury Intrusion Porosimetry	30		
	3.3	3.4.	Scanning Electron Microscopy (SEM)	31		
	3.3	3.5.	Gas Chromatographic Analysis	31		

4. Pressu	Pressure Relief Analysis				
4.1. Ex	perimental Investigations of Venting Scenarios	34			
4.1.1.	Discharge Process and Thermo-Hydraulic Effects	34			
4.1.2.	Impact of Vinyl Acetate at Various Mass Flow Rates	36			
4.1.3.	Assessment of Several Flow Compositions	40			
4.1.4.	Approximation to LDPE-Polymerization Conditions	42			
4.1.5.	Valve and Waste Gas Line Analysis	44			
4.2. Me	odeling of Single-Phase Pressure Relief Scenarios	48			
4.2.1.	Calculation Method of Time-Pressure-Trajectories	48			
4.2.2.	Validation of Assumptions for Pressure Relief Modeling	49			
4.2.3.	Estimation of the Discharge Coefficient K_d	53			
4.3. M	odeling of Two-Phase Pressure Relief Scenarios by the HNE-DS Method	56			
4.3.1.	Model Structure	56			
4.3.2.	Non-Equilibrium Coefficient N	58			
4.3.3.	Flow Coefficient for Two-Phase Conditions	60			
4.3.4.	Validation of Time-Pressure-Trajectories	61			
5. Deflag	ration of Ethylene and Vinyl Acetate Mixtures	62			
5.1. Th	nermodynamic and Kinetic Assessment of Decomposition Process	62			
5.1.1.	Phenomenological Description of Deflagration at HPS Conditions	62			
5.1.2.	Flame Front Geometries in Decomposition Reaction	65			
5.1.3.	Kinetic Aspects of Thermal Decomposition	70			
5.2. Da	ata Acquisition by Analytical Investigations	73			
5.2.1.	Laminar Burning Velocity	73			
5.2.2.	Adiabatic Flame Temperature	77			
5.2.3.	Carbon Black Density	78			
5.2.4.	Heat Transfer Investigation	80			
5.2.5.	Composition of Gas Products	82			
5.3. Co	ombustion Model	88			
5.3.1.	Methodology of Burning Velocity Investigations	88			
5.3.2.	Validation of the Combustion Zone	90			
5.3.3.	Model Results for Laminar Burning Velocity	92			
5.3.4	Estimation of the Reynolds Number	96			

6.	Decom	position with Pressure Relief	98
6	.1. Exp	perimental Study of Ethylene Decomposition with Pressure Relief	99
	6.1.1.	Methodology of Relief Scenarios with Progressive Decomposition	99
	6.1.2.	Impact of Mass Flux Rate on Deflagration by Venting of Unburned Gases	101
	6.1.3.	Process Analysis by Venting of Burned Components	102
	6.1.4.	Quenching Phenomena of the Combustion Zone	104
	6.1.5.	SEM of Carbon Black formed by Ethylene Decomposition at HPS Conditions	108
6	.2. Im	pact of Vinyl Acetate on Relief Scenarios with Progressive Decomposition	109
	6.2.1.	Process Analysis by Venting of Gas/Liquid Mixture	109
	6.2.2.	Effect of the Flame Front Geometry on the Relief Process	112
	6.2.3.	Investigation of the Deflagration Process with Discharge of Combustion Gases	114
	6.2.4.	Analytical Investigation of Carbon Black Properties	116
6	.3. Sin	nulation of Decomposition with Pressure Relief	119
	6.3.1.	Numeric Model for Two Component Systems	119
	6.3.2.	Sensitivity Analysis of the Model Parameters	123
	6.3.3.	Model Validation for Burned Phase Discharge	126
	6.3.4.	Impact of Valve Opening Settings on Simulative and Experimental Results	130
	6.3.5.	Pressure Loss Calculations	131
6	.4. Mc	del Results for Decomposition with Pressure Relief of Gas/Liquid Mixtures	133
	6.4.1.	Model Validity for Differing Ignition Points	133
	6.4.2.	Parameter Dependency on the Ventilated Mass Flux	135
	6.4.3.	Numerical Simulation with Venting of the Decomposition Products	136
	6.4.4.	Comparison of the DuPont and Numerical Method	138
6	.5. Ap	plication of the Methodology to LDPE High-Pressure Conditions	139
	6.5.1.	Approximation to Polymerization Conditions	139
	6.5.2.	Impact of LDPE on Decomposition with Pressure Relief	142
	6.5.3.	Gas Chromatographic Analysis of Pyrolysis Gases at Polymerization Conditions	145
7.	Conclus	sion and Outlook	148
7	.1. Co	nclusion	148
7	.2. Ou	tlook	150
8.	Bibliography		
9.	List of Abbreviations		