

Contents

Foreword	V
Preface	XVII
Contributors	XIX
1	Introduction 1
	<i>Jürn W. P. Schmelzer and Ivan S. Gutzow</i>
2	Basic Properties and the Nature of Glasses: an Overview 9
	<i>Ivan S. Gutzow and Jürn W. P. Schmelzer</i>
2.1	Glasses: First Attempts at a Classification 9
2.2	Basic Thermodynamics 14
2.2.1	The Fundamental Laws of Classical Thermodynamics and Consequences 14
2.2.2	Thermodynamic Evolution Criteria, Stability Conditions and the Thermodynamic Description of Nonequilibrium States 22
2.2.3	Phases and Phase Transitions: Gibbs's Phase Rule, Ehrenfest's Classification, and the Landau Theory 26
2.3	Crystallization, Glass Transition and Devitrification of Glass-Forming Melts: an Overview of Experimental Results 36
2.4	The Viscosity of Glass-Forming Melts 46
2.4.1	Temperature Dependence of the Viscosity 46
2.4.2	Significance of Viscosity in the Glass Transition 54
2.4.3	Molecular Properties Connected with the Viscosity 57
2.5	Thermodynamic Properties of Glass-Forming Melts and Glasses: Overview on Experimental Results 59
2.5.1	Heat Capacity 59
2.5.2	Temperature Dependence of the Thermodynamic Functions: Simon's Approximation 65
2.5.3	Further Methods of Determination of Caloric Properties of Glass-Forming Melts and Glasses 74
2.5.4	Change of Mechanical, Optical and Electrical Properties in the Glass Transition Range 76

2.6	Thermodynamic Nature of the Glassy State	82
2.7	Concluding Remarks	88
3	Generic Theory of Vitrification of Glass-Forming Melts	91
	<i>Jürg W. P. Schmelzer and Ivan S. Gutzow</i>	
3.1	Introduction	91
3.2	Basic Ideas and Equations of the Thermodynamics of Irreversible Processes and Application to Vitrification and Devitrification Processes	95
3.2.1	Basic Assumptions	95
3.2.2	General Thermodynamic Dependencies	96
3.2.3	Application to Vitrification and Devitrification Processes	100
3.3	Properties of Glass-Forming Melts: Basic Model Assumptions	103
3.3.1	Kinetics of Relaxation	103
3.3.2	Thermodynamic Properties: Generalized Equation of State	105
3.4	Kinetics of Nonisothermal Relaxation as a Model of the Glass Transition: Change of the Thermodynamic Functions in Cyclic Cooling-Heating Processes	107
3.4.1	Description of the Cyclic Processes under Consideration	107
3.4.2	Temperature Dependence of the Structural Order Parameter in Cyclic Cooling and Heating Processes	108
3.4.3	Definition of the Glass Transition Temperature via the Structural Order Parameter: the Bartenev–Ritland Equation	110
3.4.4	Structural Order Parameter and Entropy Production	113
3.4.5	Temperature Dependence of Thermodynamic Potentials at Vitrification	115
3.4.5.1	Configurational Contributions to Thermodynamic Functions	115
3.4.5.2	Some Comments on the Value of the Configurational Entropy at Low Temperatures and on the Kauzmann Paradox	121
3.4.6	Cyclic Heating-Cooling Processes: General Results	123
3.5	The Prigogine–Defay Ratio	125
3.5.1	Introduction	125
3.5.2	Derivation	127
3.5.2.1	General Results	127
3.5.2.2	Quantitative Estimates	133
3.5.2.3	An Alternative Approach: Jumps of the Thermodynamic Coefficients in Vitrification	135
3.5.3	Comparison with Experimental Data	137
3.5.3.1	The Prigogine–Defay Ratio	137
3.5.3.2	Change of Young's Modulus in Vitrification	140
3.5.4	Discussion	142
3.6	Fictive (Internal) Pressure and Fictive Temperature as Structural Order Parameters	143
3.6.1	Brief Overview	143

3.6.2	Model-Independent Definition of Fictive (Internal) Pressure and Fictive Temperature	146
3.7	On the Behavior of the Viscosity and Relaxation Time at Glass Transition	149
3.8	On the Intensity of Thermal Fluctuations in Cooling and Heating of Glass-Forming Systems	152
3.8.1	Introduction	152
3.8.2	Glasses as Systems with Frozen-in Thermodynamic Fluctuations: Mueller and Porai-Koshits	153
3.8.3	Final Remarks	158
3.9	Results and Discussion	158
4	Generic Approach to the Viscosity and the Relaxation Behavior of Glass-Forming Melts	165
	<i>Jürn W. P. Schmelzer</i>	
4.1	Introduction	165
4.2	Pressure Dependence of the Viscosity	166
4.2.1	Application of Free Volume Concepts	166
4.2.2	A First Exception: Water	169
4.2.3	Structural Changes of Liquids and Their Effect on the Pressure Dependence of the Viscosity	171
4.2.4	Discussion	173
4.3	Relaxation Laws and Structural Order Parameter Approach	174
4.3.1	Basic Equations: Aim of the Analysis	174
4.3.2	Analysis	175
4.3.3	Discussion	177
5	Thermodynamics of Amorphous Solids, Glasses, and Disordered Crystals	179
	<i>Ivan S. Gutzow, Boris P. Petroff, Snejana V. Todorova, and Jürn W. P. Schmelzer</i>	
5.1	Introduction	179
5.2	Experimental Evidence on Specific Heats and Change of Caloric Properties in Glasses and in Disordered Solids: Simon's Approximations	182
5.3	Consequences of Simon's Classical Approximation: the $\Delta G(T)$ Course	194
5.4	Change of Kinetic Properties at T_g and the Course of the Vitrification Kinetics	195
5.5	The Frenkel-Kobeko Postulate in Terms of the Generic Phenomenological Approach and the Derivation of Kinetic and Thermodynamic Invariants	198
5.6	Glass Transitions in Liquid Crystals and Frozen-in Orientational Modes in Crystals	208
5.7	Spectroscopic Determination of Zero-Point Entropies in Molecular Disordered Crystals	212

5.8	Entropy of Mixing in Disordered Crystals, in Spin Glasses and in Simple Oxide Glasses	213
5.9	Generalized Experimental Evidence on the Caloric Properties of Typical Glass-Forming Systems	215
5.10	General Conclusions	219
6	Principles and Methods of Collection of Glass Property Data and Analysis of Data Reliability	223
	<i>Oleg V. Mazurin</i>	
6.1	Introduction	223
6.2	Principles of Data Collection and Presentation	225
6.2.1	Main Principles of Data Collection	225
6.2.2	Reasons to Use the Stated Principles of Data Collection	228
6.2.3	Problems in Collecting the Largest Possible Amounts of Glass Property Data	230
6.2.4	Main Principles of Data Presentation	231
6.3	Analysis of Existing Data	232
6.3.1	About the Reliability of Experimental Data	232
6.3.2	Analysis of Data on Properties of Binary Systems	233
6.3.2.1	General Features of the Analysis	233
6.3.2.2	Some Factors Leading to Gross Errors	237
6.3.2.3	Some Specific Examples of the Statistical Analysis of Experimental Data	239
6.3.2.4	What is to Do if the Number of Sources Is Too Small?	243
6.4	About the Reliability of the Authors of Publications	246
6.4.1	The Moral Aspect of the Problem	246
6.4.2	An Example of Systematically Unreliable Experimental Data	247
6.4.3	Concluding Remarks	251
6.5	General Conclusion	253
7	Methods of Prediction of Glass Properties from Chemical Compositions	255
	<i>Alexander I. Priven</i>	
7.1	Introduction: 120 Years in Search of a Silver Bullet	255
7.2	Principle of Additivity of Glass Properties	257
7.2.1	Simple Additive Formulae	257
7.2.2	Additivity and Linearity	258
7.2.3	Deviations from Linearity	259
7.3	First Attempts of Simulation of Nonlinear Effects	260
7.3.1	Winkelmann and Schott: Different Partial Coefficients for Different Composition Areas	260
7.3.2	Gehlhoff and Thomas: Simulation of Small Effects	260
7.3.3	Gillard and Dubrul: Polynomial Models	262
7.4	Structural and Chemical Approaches	264
7.4.1	Nonlinear Effects and Glass Structure	264
7.4.2	Specifics of the Structural Approach to Glass Property Prediction	266

- 7.4.3 First Trials of Application of Structural and Chemical Ideas to the Analysis of Glass Property Data 267
- 7.4.4 Evaluation of the Contribution of Boron Oxide to Glass Properties 267
- 7.4.4.1 Model by Huggins and Sun 268
- 7.4.4.2 Models by Appen and Demkina 268
- 7.4.5 Use of Other Structural Characteristics in Appen's and Demkina's Models 271
- 7.4.6 Recalculation of the Chemical Compositions of Glasses 272
- 7.4.7 Use of Atomic Characteristics in Glass and Melt Property Prediction Models 278
- 7.4.8 Ab Initio and Other Direct Methods of Simulation of Glass Structure and Properties 279
- 7.4.9 Conclusion 280
- 7.5 Simulation of Viscosity of Oxide Glass-Forming Melts in the Twentieth Century 280
 - 7.5.1 Simulation of Viscosity as a Function of Chemical Composition and Temperature 280
 - 7.5.2 Approaches to Simulation of Concentration Dependencies of Viscosity Characteristics 282
 - 7.5.2.1 Linear Approach 282
 - 7.5.2.2 Approach of Mazurin: Summarizing of Effects 283
 - 7.5.2.3 Approach of Lakatos: Redefinition of Variables 284
 - 7.5.2.4 Polynomial Models 284
 - 7.5.3 Conclusion 285
- 7.6 Simulation of Concentration Dependencies of Glass and Melt Properties at the Beginning of the Twenty-First Century 286
 - 7.6.1 Global Glass Property Databases as a Catalyst for Development of Glass Property Models 286
 - 7.6.2 Linear and Polynomial Models 286
 - 7.6.3 Calculation of Liquidus Temperature: Neural Network Simulation 289
 - 7.6.4 Approach of the Author 291
 - 7.6.4.1 Background 291
 - 7.6.4.2 Model 292
 - 7.6.4.3 Comparison with Previous Models 294
 - 7.6.4.4 Conclusion 296
 - 7.6.5 Fluegel: a Global Model as a Combination of Local Models 296
 - 7.6.6 Integrated Approach: Evaluation of the Most Probable Property Values and Their Errors by Using all Available Models and Large Arrays of Data 297
- 7.7 Simulation of Concentration Dependencies of Glass Properties in Nonoxide Systems 299
- 7.8 Summary: Which Models Were Successful in the Past? 301
- 7.9 Instead of a Conclusion: How to Catch a Bluebird 306

8	Glasses as Accumulators of Free Energy and Other Unusual Applications of Glasses	311
	<i>Ivan S. Gutzow and Snejana V. Todorova</i>	
8.1	Introduction	311
8.2	Ways to Describe the Glass Transition, the Properties of Glasses and of Defect Crystals: a Recapitulation	313
8.3	Simon's Approximation, the Thermodynamic Structural Factor, the Kinetic Fragility of Liquids and the Thermodynamic Properties of Defect Crystals	318
8.4	The Energy, Accumulated in Glasses and Defect Crystals: Simple Geometric Estimates of Frozen-in Entropy and Enthalpy	324
8.4.1	Enthalpy Accumulated at the Glass Transitions	324
8.4.2	Free Energy Accumulated at the Glass Transition and in Defect Crystals	327
8.5	Three Direct Ways to Liberate the Energy, Frozen-in in Glasses: Crystallization, Dissolution and Chemical Reactions	331
8.5.1	Solubility of Glasses and Its Significance in Crystal Synthesis and in the Thermodynamics of Vitreous States	332
8.5.2	The Increased Reactivity of Glasses and the Kinetics of Chemical Reactions Involving Vitreous Solids	339
8.6	The Fourth Possibility to Release the Energy of Glass: the Glass/Crystal Galvanic Cell	340
8.7	Thermoelectric Driving Force at Metallic Glass/Crystal Contacts: the Seebeck and the Peltier Effects	344
8.8	Unusual Methods of Formation of Glasses in Nature and Their Technical Significance	348
8.8.1	Introductory Remarks	348
8.8.2	Agriglasses, Glasses as Nuclear Waste Forms and Possible Medical Applications of Dissolving Organic Glasses	350
8.8.3	Glasses as Amorphous Battery Electrodes, as Battery Electrolytes and as Battery Membranes	352
8.8.4	Photoeffects in Amorphous Solids and the Conductivity of Glasses	353
8.9	Some Conclusions and a Discussion of Results and Possibilities	354
9	Glasses and the Third Law of Thermodynamics	357
	<i>Ivan S. Gutzow and Jürgen W. P. Schmelzer</i>	
9.1	Introduction	357
9.2	A Brief Historical Recollection	360
9.3	The Classical Thermodynamic Approach	363
9.4	Nonequilibrium States and Classical Thermodynamic Treatment	366
9.5	Zero-Point Entropy of Glasses and Defect Crystals: Calculations and Structural Dependence	368
9.6	Thermodynamic and Kinetic Invariants of the Glass Transition	369
9.7	Experimental Verification of the Existence of Frozen-in Entropies	371

9.8	Principle of Thermodynamic Correspondence and Zero-Point Entropy Calculations	376
9.9	A Recapitulation: the Third Principle of Thermodynamics in Nonequilibrium States	377
10	On the Etymology of the Word “Glass” in European Languages and Some Final Remarks	379
	<i>Ivan S. Gutzow</i>	
10.1	Introductory Remarks	379
10.2	“Sirsu”, “Shvistras”, “Hyalos”, “Vitrum”, “Glaes”, “Staklo”, “Cam”	380
10.3	“Vitreous”, “Glassy” and “Glasartig”, “Vitro-crystalline”	382
10.4	Glasses in Byzantium, in Western Europe, in Venice, in the Balkans and Several Other Issues	384
10.5	Concluding Remarks	385
	References	387
	Index	407