Contents

Preface ---- V

Introduction —— VII

Part I: Applied matrix algebra

1	Matrices and linear algebraic equations —— 3
1.1	Simultaneous linear equations — 3
1.2	Review of basic matrix operations —— 4
1.2.1	Matrix addition and subtraction —— 5
1.2.2	Matrix multiplication —— 5
1.2.3	Special matrices —— 6
1.3	Elementary row operations and row echelon form of a matrix — 7
1.3.1	Representation of elementary row operations —— 8
1.4	Rank of a matrix and condition for existence of solutions —— 10
1.4.1	The homogeneous system Au = 0 —— 10
1.4.2	The inhomogeneous system $Au = b - 12$
1.5	Gaussian elimination and LU decomposition —— 15
1.5.1	Lower and upper triangular systems —— 15
1.5.2	Gaussian elimination —— 16
1.5.3	LU decomposition/factorization —— 18
1.6	Inverse of a square matrix —— 19
1.6.1	Properties of inverse —— 19
1.6.2	Calculation of inverse —— 20
1.7	Vector-matrix formulation of some chemical engineering
	problems —— 21
1.7.1	Batch reactor: evolution equations with multiple reactions —— 22
1.7.2	Continuous-flow stirred tank reactor (CSTR): transient and steady-state models with multiple reactions —— 24
1.7.3	Two interacting tank system: transient model for mixing with in- and outflows —— 25
1.7.4	Models for transient diffusion, convection and diffusion-convection (compartment models) —— 27
1.8	Application of elementary matrix concepts —— 30
1.9	Application of computer algebra and symbolic manipulation —— 33
1.9.1	Example 1: mass transfer disguised matrix for a five species
	system —— 35
1.9.2	Example 2: mass transfer disguised matrix for a ten species system —— 36
	System 50

2	Determinants —— 44
2.1	Definition of determinant —— 44
2.2	Properties of the determinant —— 46
2.3	Computation of determinant by pivotal condensation —— 48
2.4	Minors, cofactors and Laplace's expansion —— 49
2.4.1	Classical adjoint and inverse matrices —— 51
2.5	Determinant of the product of two matrices —— 52
2.6	Rank of a matrix defined in terms of determinants —— 53
2.7	Solution of $\mathbf{A}\mathbf{u} = 0$ and $\mathbf{A}\mathbf{u} = \mathbf{b}$ by Cramer's rule —— 54
2.8	Differentiation of a determinant —— 56
2.9	Applications of determinants —— 57
3	Vectors and vector expansions —— 65
3.1	Linear dependence, basis and dimension —— 66
3.2	Dot or scalar product of vectors —— 67
3.3	Linear algebraic equations —— 70
3.4	Applications of vectors and vector expansions —— 72
3.4.1	Stoichiometry —— 72
3.4.2	Dimensional analysis —— 74
3.5	Application of computer algebra and symbolic manipulation —— 76
3.5.1	Determination of independent reactions —— 76
4	Solution of linear equations by eigenvector expansions —— 82
4.1	The matrix eigenvalue problem —— 82
4.2	Left eigenvectors and the adjoint eigenvalue problem (eigenrows) —— 85
4.3	Properties of eigenvectors/eigenrows —— 87
4.4	Orthogonal and biorthogonal expansions — 96
4.4.1	Vector expansions —— 96
4.4.2	Orthogonal expansions —— 96
4.4.3	Biorthogonal expansions —— 98
4.5	Solution of linear equations using eigenvector expansions —— 99
4.5.1	Solution of linear algebraic equations Au = b 99
4.5.2	(Fredholm alternative): solution of linear algebraic equations $\mathbf{A}\mathbf{u} = \mathbf{b}$
	when A is singular —— 100
4.5.3	Linear coupled first-order differential equations with constant
	coefficients —— 102
4.5.4	Linear coupled inhomogeneous equations —— 104
4.5.5	A second-order vector initial value problem —— 105
4.5.6	Multicomponent diffusion and reaction in a catalyst pore —— 107
4.6	Diagonalization of matrices and similarity transforms —— 109
4.6.1	Examples of similarity transforms —— 110
4.6.2	Canonical form —— 112

4.6.3	Similarity transform when $A^T = A - 114$
5	Solution of linear equations containing a square matrix —— 122
5.1	Cayley—Hamilton theorem —— 122
5.2	Functions of matrices —— 125
5.3	Formal solutions of linear differential equations containing a square matrix —— 129
5.4	Sylvester's theorem —— 131
5.5	Spectral theorem —— 135
5.6	Projections operators and vector projections —— 142
5.6.1	Standard basis and projection in \mathbb{R}^2 — 142
5.6.2	Nonorthogonal projections —— 143
5.6.3	Geometric interpretation with real and negative eigenvalues —— 145
5.6.4	Geometrical interpretation with complex eigenvalues with negative real part —— 148
5.6.5	Geometrical interpretation with one zero eigenvalue —— 149
5.6.6	Physical and geometrical interpretation of transient behavior of
	interacting tank systems for various initial conditions —— 150
6	Generalized eigenvectors and canonical forms —— 160
6.1	Repeated eigenvalues and generalized eigenvectors —— 160
6.1.1	Linearly independent solutions of $\frac{d\mathbf{u}}{dt} = \mathbf{A}\mathbf{u}$ with repeated eigenvalues —— 161
6.1.2	Examples of repeated EVs and GEVs —— 162
6.2	Jordon canonical forms —— 164
6.3	Multiple eigenvalues and generalized eigenvectors —— 166
6.4	Determination of $f(\mathbf{A})$ when A has multiple eigenvalues — 173
6.5	Application of Jordon canonical form to differential equations —— 175
7	Quadratic forms, positive definite matrices and other applications —— 179
7.1	Quadratic forms —— 179
7.2	Positive definite matrices —— 183
7.3	Rayleigh quotient —— 184
7.4	Maxima/minima for a function of several variables —— 185
7.5	Linear difference equations —— 190
7.6	Generalized inverse and least square solutions —— 196
Part I	· Abstract vector space concepts

- Vector space over a field —— 207
 Definition of a field —— 207 8
- 8.1

8.2	Definition of an abstract vector or linear space: —— 208
8.2.1	Subspaces —— 209
8.2.2	Bases and dimension —— 210
8.2.3	Coordinates —— 211
9	Linear transformations —— 214
9.1	Definition of a linear transformation —— 214
9.2	Matrix representation of a linear transformation —— 216
9.2.1	Change of basis —— 221
9.2.2	Kernel and range of a linear transformation —— 222
9.2.3	Relation to linear equations —— 223
9.2.4	Isomorphism —— 224
9.2.5	Inverse of a linear transformation —— 225
10	Normed and inner product vector spaces —— 229
10.1	Definition of normed linear spaces —— 229
10.2	Inner product vector spaces —— 231
10.2.1	Gram-Schmidt orthogonalization procedure —— 236
10.3	Linear functionals and adjoints —— 238
11	Applications of finite-dimensional linear algebra —— 253
11.1	Weighted dot/inner product in \mathbb{R}^n — 253
11.2	Application of weighted inner product to interacting tank
	systems —— 258
11.3	Application of weighted inner product to monomolecular kinetics —— 262
Part II	I: Linear ordinary differential equations-initial value problems, complex variables and laplace transform
12	The linear initial value problem —— 277
12.1	The vector initial value problem —— 277
12.2	The <i>n</i> -th order initial value problem —— 280
12.2.1	The n -th order inhomogeneous equation —— 284
12.3	Linear IVPs with constant coefficients —— 286
13	Linear systems with periodic coefficients —— 292
13.1	Scalar equation with a periodic coefficient —— 292
13.2	Vector equation with periodic coefficient matrix —— 295
14	Analytic solutions, adjoints and integrating factors —— 302

14.1	Analytic solutions —— 302
14.2	Adjoints and integrating factors —— 307
14.2.1	First-order equation —— 307
14.2.2	Second-order equation —— 308
14.3	Relationship between solutions of $Lu = 0$ and $L^*v = 0$ — 310
14.4	Vector initial value problem —— 310
15	Introduction to the theory of functions of a complex variable —— 318
15.1	Complex valued functions —— 318
15.1.1	Algebraic operations with complex numbers —— 318
15.1.2	Polar form of complex numbers —— 318
15.1.3	Roots of complex numbers —— 320
15.1.4	Complex-valued functions —— 320
15.2	Limits, continuity and differentiation —— 321
15.2.1	Limits —— 321
15.2.2	Continuity —— 321
15.2.3	Derivative —— 321
15.2.4	The Cauchy-Riemann equations —— 322
15.2.5	Some elementary functions of a complex variable —— 323
15.2.6	Zeros and singular points of complex-valued functions —— 325
15.3	Complex integration, Cauchy's theorem and integral formulas —— 326
15.3.1	Simply and multiply connected domains —— 327
15.3.2	Contour integrals and traversal of a closed path —— 327
15.3.3	Cauchy's theorem —— 328
15.3.4	Cauchy's integral formulas —— 330
15.4	Infinite series: Taylor's and Laurent's series —— 332
15.4.1	Taylor's series —— 333
15.4.2	Practical methods of obtaining power series —— 334
15.4.3	Laurent series —— 334
15.5	The residue theorem and integration by the method of residues —— 335
15.5.1	Other methods for evaluating residues —— 338
15.5.2	Residue theorem —— 340
16	Series solutions and special functions —— 344
16.1	Series solution of a first-order ODE —— 344
16.2	Ordinary and regular singular points —— 345
16.3	Series solutions of second-order ODEs —— 350
16.4	Special functions defined by second-order ODEs —— 353
16.4.1	Airy equation —— 353
16.4.2	Bessel equation —— 354
16.4.3	Modified Bessel equation —— 354
16.4.4	Spherical Bessel equation —— 356

19.2

16.4.5	Legendre equation —— 357
16.4.6	Associated Legendre equation —— 358
16.4.7	Hermite's equation —— 359
16.4.8	Laguerre's equation —— 360
16.4.9	Chebyshev's equation —— 360
17	Laplace transforms —— 361
17.1	Definition of Laplace transform —— 361
17.2	Properties of Laplace transform —— 363
17.2.1	Examples of Laplace transform —— 366
17.3	Inversion of Laplace transform —— 369
17.3.1	Bromwich's complex inversion formula —— 371
17.4	Solution of linear differential equations by Laplace transform —— 374
17.4.1	Initial value problems with constant coefficients —— 374
17.4.2	Elementary derivation of Heaviside's formula —— 377
17.4.3	Two-point boundary value problems —— 381
17.4.4	Linear ODEs with variable coefficients: —— 382
17.4.5	Simultaneous ODEs with constant coefficients —— 383
17.5	Solution of linear differential/partial differential equations by Laplace
	transform — 384
17.5.1	Heat transfer in a finite slab —— 385
17.5.2	TAP reactor model —— 386
17.5.3	Dispersion of tracers in unidirectional flow —— 389
17.5.4	Unsteady-state operation of a packed-bed —— 398
17.6	Control system with delayed feedback —— 404
17.6.1	PI control with delayed feedback —— 404
Part IV	/: Linear ordinary differential equations-boundary value
	problems
18	Two-point boundary value problems —— 423
18.1	The adjoint differential operator —— 423
18.1.1	The Lagrange identity for an <i>n</i> -th order linear differential
	operator —— 426
18.2	Two-point boundary value problems —— 428
18.3	The adjoint boundary value problem —— 434
18.3.1	Adjoint BCs and conditions for self-adjointness of the BVP —— 438
19	The nonhomogeneous BVP and Green's function —— 445
19.1	Introduction to Green's function —— 445

Green's function for second-order self-adjoint TPBVP —— 447

19.3	Properties of the Green's function for the second-order self-adjoint BVP —— 454
19.4	Green's function for the <i>n</i> -th order TPBVP —— 458
19.4.1	Physical interpretation of the Green's function —— 466
19.5	Solution of TPBVP with inhomogeneous boundary conditions —— 471
20	Eigenvalue problems for differential operators —— 478
20.1	Definition of eigenvalue problems —— 478
20.2	Determination of the eigenvalues —— 480
20.2.1	Relationship between the <i>n</i> -th order eigenvalue problem and the vector eigenvalue problem —— 481
20.3	Properties of the characteristic equation —— 483
21	Sturm-Liouville theory and eigenfunction expansions —— 496
21.1	Sturm-Liouville theory —— 496
21.2	Eigenfunction expansions —— 503
21.3	Convergence in function spaces and introduction to Banach and Hilbert spaces —— 505
21.3.1	Cauchy sequence —— 505
21.3.2	Riemann and Lebesque integration —— 506
21.3.3	Banach and Hilbert spaces —— 506
21.3.4	Convergence theorems for eigenfunction expansions —— 507
21.3.5	Fourier series (eigenfunction expansions) and Parseval's theorem —— 508
21.3.6	Example of Fourier series (eigenfunction expansions) —— 509
21.3.7	Fourier series (eigenfunction expansion) of the Green's function —— 514
22	Introduction to the solution of linear integral equations —— 520
22.1	Introduction —— 520
22.2	Transformation of an IVP into an IE of Volterra type —— 521
22.3	Transformation of TPBVP into an IE of Fredholm type —— 523
22.4	Solution of Fredholm integral equations with separable kernels —— 524
22.4.1	Homogeneous equation —— 524
22.4.2	Inhomogeneous equation —— 526
22.5	Solution procedure for Volterra integral equations of the second
	kind —— 530
22.5.1	Method of successive approximation —— 530
22.5.2	Adomian decomposition method —— 533
22.6	Solution procedure for Volterra integral equations of the first kind —— 534
22.6.1	Differentiation approach —— 534
22.6.2	Integration approach —— 535

XVIII - Contents

22.7

22.8

23.4

23.4.1

23.4.2

23.4.3

23.4.4

22.8.1	Solution by successive substitution —— 538
22.8.2	Solution by Adomian decomposition method —— 539
22.9	Fredholm integral equations with symmetric kernels —— 540
22.10	Adjoint operator and Fredholm alternative —— 542
22.11	Solution of FIE of the second kind with symmetric kernels —— 543
	·
Dart V	
Part v	Fourier transforms and solution of boundary and
	initial-boundary value problems
23	Finite Fourier transforms —— 551
23.1	Definition and general properties —— 551
23.1.1	Example 1 (solution of Poisson's equation) —— 552
23.1.2	Example 2 (solution of heat/diffusion equation) —— 553
23.1.3	Example 3 (solution of the wave equation) —— 553
23.2	Application of FFT for BVPs in 1D —— 554
23.2.1	Example 1 (Poisson's equation in 1-D) —— 554
23.2.2	Example 2: higher-order boundary value problems (coupled equations)
	in 1D 559
23.3	FFT for parabolic, hyperbolic and elliptic PDEs (two independent
	variables) —— 560
23.3.1	Example 3: heat/diffusion equation in a finite domain —— 560
23.3.2	Example 4: Green's function for the heat/diffusion equation in a finite
	domain —— 565
23.3.3	Example 5: heat/diffusion equation in the finite domain with time
	dependent boundary condition —— 566
23.3.4	Example 6: heat/diffusion equation in a finite domain with general
	initial and boundary conditions —— 569
23.3.5	Example 7 (wave equation) —— 569
23.3.6	Example 8 (Poisson's equation in 2-D) —— 571

Additional applications of FFT in rectangular coordinates —— 576

Example 12: (coupled equations) reaction-diffusion equations — 590

Example 9 (diffusion and reaction in a catalyst cube) — 576

Volterra integral equations with convolution kernel — 536

Fredholm integral equations of the second kind — 538

24 Fourier transforms on infinite intervals — 598

- 24.1 Fourier transform on $(-\infty, \infty)$ 598
- 24.1.1 Fourier integral formula 600
- 24.2 Finite Fourier transform and the Fourier transform 602

Example 10 (axial dispersion model) --- 579

Example 11 (Fourier's ring problem) — 588

24.2.1	Physical interpretation —— 604
24.2.2	Properties of the Fourier transform —— 605
24.2.3	Moments theorem for Fourier transform —— 607
24.2.4	Fourier transform in spatial and cyclic frequencies —— 609
24.2.5	Fourier transform and Plancherel's theorem —— 611
24.3	Solution of BVPs and IBVPs in infinite intervals using the FT — 612
24.3.1	Heat equation in an infinite rod —— 612
24.3.2	Solution of the heat equation in semi-infinite domain —— 618
24.3.3	Transforms on the half-line —— 623
24.3.4	Solution of heat/diffusion equation with radiation BC —— 625
24.3.5	Fourier transforms on an infinite domain: solution of the wave equation —— 628
24.3.6	Laplace's equation in infinite and semi-infinite domains —— 631
24.3.7	Multiple Fourier transforms —— 635
24.4	Relationship between Fourier and Laplace transforms —— 637
25	Fourier transforms in cylindrical and spherical geometries —— 642
25.1	BVP and IBVP in cylindrical and spherical geometries —— 642
25.1.1	Cylindrical geometries —— 643
25.1.2	Spherical geometries —— 644
25.1.3	3D eigenvalue problems in cylindrical geometries — 646
25.1.4	3D eigenvalue problems in spherical geometries — 648
25.2	FFT method for 1D problems in spherical and cylindrical geometries —— 651
25.2.1	Steady-state diffusion and reaction in a cylindrical catalyst —— 651
25.2.2	Transient heat/mass transfer in an 1D infinite cylinder —— 654
25.2.3	Steady-state 1D diffusion and reaction in a spherical catalyst particle —— 658
25.2.4	Transient 1D heat conduction in a spherical geometry —— 660
25.3	2D and 3D problems in cylindrical geometry —— 662
25.3.1	Solution of Laplace's equation inside a unit circle —— 662
25.3.2	Vibration of a circular membrane —— 664
25.3.3	Three-dimensional problems in cylindrical geometry —— 669
25.4	2D and 3D problems in spherical geometry —— 671
25.4.1	Poisson's equation in a sphere —— 671

Part VI: Formulation and solution of some classical chemical engineering problems

26 The classical Graetz-Nusselt problem —— 683

26.1 Model formulations and formal solution — 683

26.1.1	Analysis of constant wall temperature boundary condition —— 684
26.2	Parallel plate with fully-developed velocity profile —— 688
26.3	Circular channel with fully-developed velocity profile —— 690
27	Friction factors for steady-state laminar flow in ducts —— 695
27.1	Model formulations and formal solution —— 695
27.2	Specific example: parallel plates —— 697
27.2.1	Direct solution —— 697
27.2.2	FFT approach —— 698
27.3	Specific case: elliptical ducts —— 699
28	Multicomponent diffusion and reaction —— 704
28.1	Generalized effectiveness factor problem —— 704
28.1.1	Effectiveness factor —— 706
28.1.2	Sherwood number (for internal mass-transfer coefficient) —— 707
28.1.3	Exact expressions for Sh_i for some common geometries — 708
28.2	Multicomponent diffusion and reaction in the washcoat layer of a
	monolith reactor —— 709
28.3	Isothermal monolith reactor model for multiple reactions —— 712
28.3.1	Example: reversible sequential reactions —— 713
29	Packed-bed chromatography —— 721
29.1	Model formulation —— 721
29.1.1	Adsorption isotherm —— 722
29.1.2	Nondimensional form —— 724
29.1.3	Limiting case: $p \rightarrow 0$ — 725
29.2	Similarity with heat transfer in packed-beds —— 727
29.3	Impact of interphase mass transfer —— 727
29.3.1	Pseudo-homogeneous model —— 729
29.4	Solution of the hyperbolic model by Laplace transform —— 729
29.5	Chromatography model with dispersion in fluid phase —— 731
29.5.1	Limiting cases —— 732
29.5.2	Lumped model for $p \rightarrow 0$ — 732
29.5.3	Lumped model for $p > 0$ —— 733
29.5.4	Chromatography model with dispersion in fluid phase for unit impulse
	input 735
29.5.5	Finite stage chromatography model —— 736
29.6	Impact of intraparticle gradients —— 737
30	Stability of transport and reaction processes —— 740
30.1	Lapwood convection in a porous rectangular box —— 740
RO 1 1	Model formulation —— 740

30.1.2	Conduction state and its stability —— 742	
30.1.3	Neutral curve and critical Ra _d —— 745	
30.2	Chemical reactor stability and dynamics —— 748	
30.2.1	Model of a cooled CSTR —— 749	
30.2.2	Dimensionless form of model for a single reaction —— 750	
30.2.3	Stability analysis —— 751	
Bibliography —— 759		

Index —— 761