Contents

1	Intro	duction	1	
	1.1	General Introduction and Definition of Notation	1	
	1.1.1	Chronological Review	1	
	1.1.2	Basic Notation	3	
	1.2	Quantum Electrodynamics with an External Field	5	
2	Scatt	ering Processes in Which Interactions with the External Field		
	are T	aken into Account Exactly	16	
	2.1	The Quantized Charged Field in an External		
		Electromagnetic Field	16	
	2.1.1	Spinor Field	16	
	2.1.2	Scalar Field	29	
	2.2	Perturbation Expansion in the Radiative Interaction in QED		
		with an External Field	32	
	2.3	Green's Functions. The Generating Functional	40	
	2.4	Appendix. Extension of the Normal-Ordering Process to		
		Theories with an Unstable Vacuum	50	
3	Expectation Values			
_	3.1	Green's Functions for the Calculation of Expectation Values	54	
	3.2	Perturbations in Powers of Radiative Interaction for		
		Expectation Values	55	
	3.3	Equation for the Average Electromagnetic Field. Effective		
		Action	60	
	3.4	Density Matrix of Particles Created by an External Field	64	
4	Total	Probabilities of Radiative Processes in an External Field	73	
Ī	4.1	Total Irradiation Probability	73	
	4.1.1	Total Probability of Irradiation from the Vacuum		
		Accompanied by Pair Creation	75	
	4.1.2	Differential Probability for Photon Irradiation from the		
		Vacuum Accompanied by Pair Creation	78	
	4.1.3	Probability of Photon Irradiation from the Vacuum	.0	
		Accompanied by the Creation of a Single Pair	79	
		recompanies by the creation of a single I air	,,	

	4.1.4	Total Probability of Irradiation from a One-Electron State	
		Accompanied by Pair Creation	81
	4.1.5	Differential Probability of a One-Photon Emission from a	
		One-Electron State Accompanied by Pair Creation	83
	4.1.6	Probability of One-Photon Emission from a One-Electron	
		State Without Pair Creation	84
	4.1.7	Radiative Processes with a Photon in the Initial State	85
	4.2	Unitarity Relation and the Optical Theorem	89
	4.3	Generating Functional for the Total Probabilities of	
		Radiation Processes	96
	4.4	Decay Probability of States	103
	4.4.1	Vacuum Decay Probability	103
		Decay Probability of a One-Electron State	104
		Decay Probability of a One-Photon State	105
5		lations of Zero-Order Processes in External Electromagnetic	107
		S	107
	5.1	Processes in an Electric Field	109
		Constant Electric Field	112
	5.1.2	Alternating Electric Field	122
	5.2	A Constant Field Combined with that of a Plane Wave	126
		Solutions of the Klein-Gordon Equation	127
		Solutions of the Dirac Equation	131
		Calculation of Zero-Order Processes. Spinor QED	133
	5.2.4	Calculation of Zero-Order Processes. Scalar QED	139
	5.3	Creation of Particles from the Vacuum in Coherent	
		States	142
	5.4	Calculation of the Density Matrix for Particles Created in	
		an External Field	144
,	_		1.40
b	•	agators of Particles in External Electromagnetic Fields	148
	6.1	Introduction	148
	6.2	Determination of Propagators by Summing Solutions of the	156
	() 1	Relativistic Wave Equations	156
		Constant Electric Field	130
	0.2.2	A Constant Field Combined with that of a Plane	170
	(22	Wave	170
		Eigenfunction Method	
	6.3	Schwinger's Proper-Time Method	184
	6.4	Calculation of the Green's Functions by the Functional	
		Integration Method	191
		Path Integral Representation of the Green's Functions	191
		Combination of a Constant Field with a Plane Wave	204
	643	Stationary Phase Method	209

		Contents	IX		
7	Calculations of Radiative Processes in External Electromagnetic				
	Field		219		
	7.1	Effective Action in the One-Loop Approximation	220		
	7.2	Vacuum Processes	223		
	7.2.1	Mean Current of Created Particles	223		
	7.2.2	Probability of Photon Emission from the Vacuum			
		Accompanied by Pair Creation	225		
	7.2.3	Total Probability of Photon Emission from the Vacuum			
		Accompanied by Pair Creation	229		
	724	Probability of a Photon Emission from the Vacuum			
	,	Accompanied by the Creation of a Single Pair. Vacuum			
		Decay Probability	232		
			232		
	7.3	Processes with an Electron in the Initial State. Mass			
		Operator	234		
	7.3.1	Probability of Transition from a One-Electron State with the			
		Emission of a Photon and the Creation of Pairs	234		
	7.3.2	Total Transition Probability from a One-Electron State with			
		Photon Emission and Pair Creation	240		
	7.3.3	Probability of Photon Emission from a One-Electron State			
		without Pair Creation. Decay Probability of a One-Electron			
		State	242		
	7.4				
	7.4	Radiative Processes with a Photon in the Initial State.	246		
		Polarization Operator	246		
8	Gree	n's Function in Non-Abelian Theories	251		
	8.1	Introduction	251		
	8.2	Calculation of Green's Functions by the Functional			
		Integration Method	255		
	8.3	Calculation of Green's Functions in an Abelian-like External			
		Field	268		
r	. C · ·		273		
K	eierei	ices	213		
S	ubject	Index	285		