Contents

	Non	linear V	Vaves in Homogeneous Media	1	
	1.1	Preliminaries		1	
		1.1.1	Equations of Motion		
			of a Homogeneous Nonlinear Rod	1	
		1.1.2	Riemann Invariants and Characteristics	2	
		1.1.3	Simple Wave Equation	3	
		1.1.4	Conditions on the Strong Shock	4	
		1.1.5	Stability Condition for the Strong Shock	5	
		1.1.6	Weak Shocks	7	
	1.2	Nonlin	near Hyperbolic Equations of the First Order	7	
		1.2.1	Conditions on the Shock	7	
		1.2.2	Constancy of the Integrals of Solutions	8	
		1.2.3	Solution of the Boundary Value Problem		
			Method of Characteristics	9	
		1.2.4	Wave Breaking	11	
		1.2.5	Principle of Equal Areas	12	
		1.2.6	An Example	13	
		1.2.7	Ordinary Differential Equation for a Shock		
			Propagating into an Undisturbed Domain	14	
	1.3	Exact	Factorization of the Nonlinear Wave Equation		
		with Constant Coefficients			
		1.3.1	Introductory Observations	15	
		1.3.2	Factorization Theorem for the Wave Equation		
			for Stress	16	
		1.3.3	Difference Between Linear and Nonlinear		
			Factorization	17	
		1.3.4	Factorization Theorem		
			for the Deformation Wave Equation	18	
		1.3.5	Earnshaw's Theorem	18	
		1.3.6	Generalization of Earnshaw's Theorem	19	
		1.3.7	A Boundary Value Problem Posed		
			in Terms of Displacements	20	
	1.4	Shock	-Wave in a Simple System	22	
		1.4.1	Formulation of the Problem	22	
		1.4.2	Nonconformity of the Single-Wave Equation		
			to the Shock Condition	23	

ı	ЛΠ	Contents
٦	7 111	Comenis

		1.4.3	Transformation of the Single-Wave Equation.	
			Integral Equation for $g(\sigma)$ Generating	
			the Transformation	24
		1.4.4	Construction of the Function $g(\sigma)$	25
		1.4.5	Discussion of the Results	27
	1.5	The SI	hock-Wave in a Simple System (Continuation)	30
		1.5.1	Application of the Principle of Equal Areas	30
		1.5.2	Application of Euler's Method	31
			•	
2.	Noi	ılinear S	Short Waves of Finite Amplitude	
	in I		geneous Media	33
	2.1	Asymı	ptotic Factorization of the Nonlinear Wave Equation	
		with a	Variable Coefficient	33
		2.1.1	Representation of the Nonlinear Wave Equation	
			with a Variable Coefficient	33
		2.1.2	Formulation of the Boundary Value Problem.	
			Conditions of Asymptotic Factorization	37
		2.1.3	Single-Wave Solution	
			of the Boundary Value Problem	38
	2.2	When	is the Factorization Exact?	39
		2.2.1	Nonlinear Case	39
		2.2.2	Linear Case	40
	2.3	Asym	ptotic Factorization of the General Nonlinear	
		Wave	Equation with Variable Coefficients	42
		2.3.1	Preliminary Notes	42
		2.3.2	Notation	42
		2.3.3	Representation of the General Nonlinear Wave	
			Equation with Variable Coefficients	43
		2.3.4	Formulation of the Boundary Value Problem	
			Conditions of Asymptotic Factorization	46
		2.3.5	Linear Case	47
	2.4	Evolut	tion of Maximal Amplitude of the Stress Wave	48
		2.4.1	Formulation of the Problem	48
		2.4.2	Equation for Maximal Amplitudes	48
		2.4.3	The Curve of Maximums as a Characteristic	49
	2.5	Propag	gation of a Stress Wave	
			Iomogeneous Nonlinear Elastic Rod Located	
			Gravity Field	50
		2.5.1	Formulation of the Problem	50
		2.5.2	Uselessness of Exact Factorization	51
		2.5.3	Asymptotic Factorization	52
		2.5.4	Single-Wave Solution of the Problem	53

		Contents	IX
Non	linear W	aves in Media with Memory	55
3.1		tary Elasticity	55
J	3.1.1	Linear Equations	55
	3.1.2	Nonlinear Equations	56
3.2		Quadratic Nonlinearity	58
•	3.2.1	Asymptotic Factorization	
		of the Nonlinear Wave Equation with Memory	58
	3.2.2	Why Can't the Factorization be Exact?	60
	3.2.3	Single-Wave Equation	60
	3.2.4	Condition on the Shock for the Stress Wave	61
	3.2.5	New Notation	62
3.3	Contin	uous Stationary Profile Waves and Nonzero Solutions	
		nogeneous Integral Volterra Equations	63
	3.3.1	Waves Propagating in an Undisturbed Medium	63
	3.3.2	Integral Equation for the Wave	
		of Stationary Profile	63
	3.3.3	Estimate of the Solution of the Integral Equation	64
	3.3.4	Existence of Stationary Profile Waves.	
		Special Case	66
	3.3.5	Existence of the Wave of Stationary Profile.	
		General Case	69
	3.3.6	The Exponential Kernel	71
	3.3.7	The Simplest Oscillatory Kernel	72
	3.3.8	A More Complicated Oscillatory Kernel	73
	3.3.9	Waves Propagating in a Prestressed Medium	75
	3.3.10	The Exponential Kernel	77
3.4	Stationary Profile Shock-Waves		
	and Se	If-Coordinated Integral Volterra Equations	80
	3.4.1	Waves Propagating in an Undisturbed Medium	80
	3.4.2	Integral Equation for Stationary Profile Waves	81
	3.4.3	Estimate of the Solution of the Integral Equation	82
	3.4.4	Existence of Stationary Profile Shock-Waves	83
	3.4.5	The Power Kernel	85
	3.4.6	The Exponential Kernel	86
	3.4.7	Waves Propagating in a Prestressed Medium	87
3.5	Waves	Tending to a Stationary Profile	89
	3.5.1	Intuitive Approach	89
	3.5.2	Rok's Method	92
3.6		tionary Waves	
	Analog	g of the Landau-Whitham Formula	93
	3.6.1	Formulation of the Problem	93
	3.6.2	Linear Case	93
	3.6.3	Case of Small Quadratic Nonlinearity	94
	3.6.4	Estimate of Quality of the Approximate Solution	95
	3.6.5	Single-Wave Equation for Deformation	96

3.

	3.6.6	Single-Wave Equation for Displacement	97
	3.6.7	A Boundary Value Problem Posed	
		in Terms of Displacement	98
3.7	General	Nonlinearity. Further Factorization Theorems	
		nlinear Wave Equations with Memory	9 9
	3.7.1	Preliminary Notes	99
	3.7.2	The Exact Factorization Theorem	99
	3.7.3	The Asymptotic Factorization Theorem	101
	3.7.4	Waves in Rods in the Presence	
	•	of External Friction	104
3.8	Nonsta	tionary Waves	
	for an 1	Exponential Memory Function	105
	3.8.1	Formulation of the Problem	105
	3.8.2	Derivation	
		of a Single-Wave Differential Equation	106
	3.8.3	The Analytic Solution in a Smoothness Domain	106
	3.8.4	Wave Breaking	107
	3.8.5	Case of Small Amplitudes.	
		Asymptotic Analysis of the Shock-Wave	109
3.9	Reflect	ion of a Wave from the Boundary	
	Betwee	n Linear Elastic and Nonlinear Hereditary Media	111
	3.9.1	Formulation of the Boundary Value Problem	111
	3.9.2	Reduction of the Problem	
		to an Integro-Functional Equation	112
	3.9.3	Solution of the Integro-Functional Equation	114
3.10	The Ex	actly Factorizable Linear Wave Equation with Memory	
	and a V	Variable Coefficient	115
	3.10.1	Factorization Theorem	115
	3.10.2	Solution of the Boundary Value Problem	116
Refe	rences		117
Subi	ect Inde	x	119
ינטשט	CC TIINC	A	