Theory of Periodic Conjugate Heat Transfer

With 41 Figures and 11 Tables

Contents

AU	prev	lations	ΛV		
$\mathbf{S}\mathbf{y}$	mbol	ls	XVII		
1	Inti	roduction	1		
	1.1	Heat Transfer Processes Containing Periodic Oscillations	1		
		1.1.1 Oscillation Internal Structure			
		of Convective Heat Transfer Processes	1		
		1.1.2 Problem of Correct Averaging			
		the Heat Transfer Coefficients	3		
	1.2	Physical Examples	6		
	1.3	Numerical Modeling of Conjugate Convective—Conductive			
		Heat Transfer	10		
	1.4	Mechanism of Hydrodynamic Oscillations in a Medium			
		Flowing Over a Body	12		
		1.4.1 Van Driest Model	12		
		1.4.2 Periodic Model of the Reynolds Analogy	13		
		1.4.3 Model of Periodical Contacts	15		
	1.5	Hydrodynamic HTC	18		
	1.6	Previous Investigations of Heat Transfer Processes			
		with Periodic Intensity	20		
	1.7	Analytical Methods	20		
	Refe	erences	21		
2	Construction of a General Solution of the Problem				
	2.1	Boundary Value Problem			
		for the Heat Conduction Equation	27		
	2.2	Spatial and Temporal Types of Oscillations	30		
	2.3	Interrelation between the Two Averaged Coefficients			
f		of Heat Transfer	31		
	2.4	Dimensionless Parameters	34		

	2.5	Factor of Conjugation: An Analysis of Limiting Variants	35
	Refe	erences	36
3	Sol	ution of Characteristic Problems	37
	3.1	Construction of the General Solution	37
	3.2	Harmonic Law of Oscillations	39
	3.3	Inverse Harmonic Law of Oscillations	43
	3.4	Delta-Like Law of Oscillations	53
	3.5	Step Law of Oscillations	55
	3.6	Comparative Analysis of the Conjugation Effects	00
	0.0	(Smooth and Step Oscillations)	68
	3.7	Particular Exact Solution	69
	٠.,	erences	70
4		iversal Algorithm of Computation of the Factor	70
		Conjugation	73 7 3
	4.1	Smooth Oscillations (Approximate Solutions)	73
	4.2	BC on a Heat Transfer Surface (Series Expansion	
		in a Small Parameter)	75
	4.3	Derivation of a Computational Algorithm	77
	4.4	Phase Shift Between Oscillations	80
	4.5	Method of a Small Parameter	83
	4.6	Application of the Algorithm for an Arbitrary Law of Oscillations	85
	4.7	Filtration Property of the Computational Algorithm	91
	4.8	Generalized Parameter of the Thermal Effect	92
	4.9	Advantages of the Computational Algorithm	93
		erences	93
_	C - 1	ortion of Constil Doubless	05
5		ution of Special Problems	95
	5.1	Complex Case of Heating or Cooling	95
	5.2	Heat Transfer on the Surface of a Cylinder	102
	5.3	Heat Transfer on the Surface of a Sphere	103
	5.4	Parameter of Thermal Effect for Different Geometrical	
	r	Bodies	104
	5.5	Overall ATHTC	105
		5.5.1 Overall EHTC	105
		5.5.2 Bilateral Spatiotemporal Periodicity of Heat Transfer	
		(A Qualitative Analysis)	108
	Refe	erences	110
6	Ste	p and Nonperiodic Oscillations of the Heat Transfer	
_		ensity	111
		Asymmetric Step Oscillations	111
	6.2	Nonperiodic Oscillations	117
		erences	120

	Contents
7	Practical Applications of the Theory
	7.1 Model Experiment
	7.2 Dropwise Condensation
	7.3 Nucleate Boiling
	7.3.1 Theory of Labuntsov
	7.3.2 Periodic Model of Nucleate Boiling
	References
A	Proof of the Fundamental Inequalities
	A.1 Proof of the First Fundamental Inequality
	A.2 Proof of the Second Fundamental Inequality
\mathbf{B}	Functions of the Wall Thickness
	B.1 Spatial Type of Oscillations
	B.2 Temporal Type of Oscillations
\mathbf{C}	Infinite Chain Fractions
	C.1 Fundamental Theorems of Khinchin
	C.2 Generalization of the Third Theorem of Khinchin
D	Proof of Divergence of the Infinite Series
	D.1 Spatial Type of Oscillations
	D.2 Temporal Type of Oscillations
\mathbf{E}	Functions of Thickness for Special Problems
12	E.1 Heat Transfer from the Ambience
15	E.1 Heat Transfer from the Ambience