Uwe Krey · Anthony Owen

Basic Theoretical Physics

A Concise Overview

With 31 Figures

Contents

Pa —	rt I	Mechanics and Basic Relativity			
1	Spa	ace and Time	3		
	$1.\overline{1}$	Preliminaries to Part I	3		
	1.2	General Remarks on Space and Time	3		
	1.3	Space and Time in Classical Mechanics	4		
2	For	Force and Mass			
	2.1	Galileo's Principle (Newton's First Axiom)	5		
	2.2	Newton's Second Axiom: Inertia; Newton's Equation			
		of Motion	5		
	2.3	Basic and Derived Quantities; Gravitational Force	6		
	2.4	Newton's Third Axiom ("Action and Reaction")	8		
3	Bas	sic Mechanics of Motion in One Dimension	11		
	3.1	Geometrical Relations for Curves in Space	11		
	3.2	One-dimensional Standard Problems	13		
4	Me	Mechanics of the Damped and Driven Harmonic			
	Osc	cillator	17		
5		e Three Classical Conservation Laws;			
		o-particle Problems	23		
	5.1	Theorem for the Total Momentum			
		(or for the Motion of the Center of Mass)	23		
	5.2	Theorem for the Total Angular Momentum	24		
	5.3	The Energy Theorem; Conservative Forces	26		
	5.4	The Two-particle Problem	29		
6	Mo	tion in a Central Force Field; Kepler's Problem	31		
	6.1	Equations of Motion in Planar Polar Coordinates	31		
	6.2	Kepler's Three Laws of Planetary Motion	32		
	6.3	Newtonian Synthesis: From Newton's Theory			
		of Gravitation to Kepler			
	6.4	Perihelion Rotation	34		

VIII Contents

	6.5		onian Analysis: From Kepler's Laws	
			wtonian Gravitation	36
		6.5.1	Newtonian Analysis I: Law of Force	
			from Given Orbits	36
		6.5.2	Newtonian Analysis II: From the String Loop	0.0
		6 5 9	Construction of an Ellipse to the Law $F_r = -A/r^2$	36
		$6.5.3 \\ 6.5.4$	Hyperbolas; Comets	37
		0.5.4	and Newton's Third Axiom	38
	6.6	The R	Lunge-Lenz Vector as an Additional Conserved Quantity	39
	0.0	1110 11	ango zone vocati an mananana compervou quantity	00
7	The	Ruth	erford Scattering Cross-section	41
8	_	_	Formalism I: Lagrangian and Hamiltonian	45
	8.1		agrangian Function; Lagrangian Equations	
	0.0		Second Kind	45
	8.2		aportant Example: The Spherical Pendulum	46
	8.3		Variable Lengthagrangian Equations of the 2nd Kind	40
	8.4		Coordinates; Conservation of Generalized Momenta	49
	8.5	-	Examiltonian	50
	8.6		anonical Equations; Energy Conservation II;	00
	0.0		n Brackets	51
9	Rel	ativity	I: The Principle of Maximal Proper Time	
	(Eig		;)	55
	9.1		an versus Lorentz Transformations	56
	9.2		wski Four-vectors and Their Pseudo-lengths;	
		_	r Time	58
	9.3		orentz Force and its Lagrangian	60
	9.4		amiltonian for the Lorentz Force;	01
		Kineti	c versus Canonical Momentum	61
10	Cor	ipled S	Small Oscillations	63
			tions; Normal Frequencies (Eigenfrequencies)	-
			ormal Modes	63
	10.2		nalization: Evaluation of the Eigenfrequencies	
			ormal Modes	65
	10.3	A Typ	oical Example: Three Coupled Pendulums	
			lymmetry	65
	10.4	Param	netric Resonance: Child on a Swing	68
11	Rig	id Bod	lies	71
			ational and Rotational Parts of the Kinetic Energy	71

	11.2 Moment of Inertia and Inertia Tensor; Rotational Energy	
	and Angular Momentum	72
	11.3 Steiner's Theorem; Heavy Roller; Physical Pendulum	74
	11.4 Inertia Ellipsoids; Poinsot Construction	77
	11.5 The Spinning Top I: Torque-free Top	78
	11.6 Euler's Equations of Motion and the Stability Problem	7 9
	11.7 The Three Euler Angles φ , ϑ and ψ ; the Cardani Suspension.	81
	11.8 The Spinning Top II: Heavy Symmetric Top	83
12	Remarks on Non-integrable Systems: Chaos	85
13	Lagrange Formalism II: Constraints	89
	13.1 D'Alembert's Principle	89
	13.2 Exercise: Forces of Constraint for Heavy Rollers	
	on an Inclined Plane	91
14	Accelerated Reference Frames	95
1-1	14.1 Newton's Equation in an Accelerated Reference Frame	95
	14.2 Coriolis Force and Weather Pattern	97
	14.3 Newton's "Bucket Experiment" and the Problem	٠.
	of Inertial Frames	98
	14.4 Application: Free Falling Bodies with Earth Rotation	99
1 5	Relativity II: E=mc ²	101
15	Relativity II: E=mc-	LUI
Par	rt II Electrodynamics and Aspects of Optics	
 16	Introduction and Mathematical Preliminaries to Part II 1	109
-	16.1 Different Systems of Units in Electromagnetism	
	16.2 Mathematical Preliminaries I: Point Charges	
	and Dirac's δ Function	112
	16.3 Mathematical Preliminaries II: Vector Analysis	114
17	Electrostatics and Magnetostatics	119
	17.1 Electrostatic Fields in Vacuo	
	17.1.1 Coulomb's Law and the Principle of Superposition 1	
	17.1.2 Integral for Calculating the Electric Field	
	17.1.3 Gauss's Law	
	17.1.4 Applications of Gauss's Law:	
	Calculating the Electric Fields for Cases	
	of Spherical or Cylindrical Symmetry 1	123
	17.1.5 The Curl of an Electrostatic Field;	
	The Electrostatic Potential 1	124

Contents

IX

		17.1.6 General Curvilinear, Spherical			
		and Cylindrical Coordinates			
		17.1.7 Numerical Calculation of Electric Fields			
	17.2	Electrostatic and Magnetostatic Fields in Polarizable Matter . 1			
		17.2.1 Dielectric Behavior			
		17.2.2 Dipole Fields; Quadrupoles			
		17.2.3 Electric Polarization			
		17.2.4 Multipole Moments and Multipole Expansion 1			
		17.2.5 Magnetostatics			
		17.2.6 Forces and Torques on Electric and Magnetic Dipoles 1			
		17.2.7 The Field Energy			
		17.2.8 The Demagnetization Tensor			
		17.2.9 Discontinuities at Interfaces	.43		
18		gnetic Field of Steady Electric Currents			
	18.1	Ampère's Law 1	45		
		18.1.1 An Application: 2d Boundary Currents			
		for Superconductors; The Meissner Effect 1			
		The Vector Potential; Gauge Transformations			
	18.3 The Biot-Savart Equation				
	18.4	Ampère's Current Loops and their Equivalent Magnetic			
		Dipoles			
	18.5	Gyromagnetic Ratio and Spin Magnetism 1	.51		
19	Max	xwell's Equations I: Faraday's and Maxwell's Laws \dots 1	.53		
	19.1	Faraday's Law of Induction and the Lorentz Force	.53		
	19.2	The Continuity Equation	.56		
	19.3	Ampère's Law with Maxwell's Displacement Current 1	.56		
	19.4	Applications: Complex Resistances etc	.58		
20	Max	xwell's Equations II: Electromagnetic Waves $\dots \dots 1$	63		
	20.1	The Electromagnetic Energy Theorem; Poynting Vector 1	63		
	20.2	Retarded Scalar and Vector Potentials I:			
		D'Alembert's Equation	65		
	20.3	Planar Electromagnetic Waves; Spherical Waves	66		
	20.4	Retarded Scalar and Vector Potentials II:			
		The Superposition Principle with Retardation	69		
	20.5	Hertz's Oscillating Dipole			
		(Electric Dipole Radiation, Mobile Phones)	70		
	20.6	Magnetic Dipole Radiation; Synchrotron Radiation 1			
		General Multipole Radiation			
		Relativistic Invariance of Electrodynamics			

21	Applications of Electrodynamics in the Field of Optics 21.1 Introduction: Wave Equations; Group and Phase Velocity 21.2 From Wave Optics to Geometrical Optics; Fermat's Principle 21.3 Crystal Optics and Birefringence	179 185 188 192 194
	21.5 Holography	
22	Conclusion to Part II	203
 Pai	rt III Quantum Mechanics	
23	On the History of Quantum Mechanics	207
24	Quantum Mechanics: Foundations	211
	24.1 Physical States	211
	24.1.1 Complex Hilbert Space	
	24.2 Measurable Physical Quantities (Observables)	213
	24.3 The Canonical Commutation Relation	
	24.4 The Schrödinger Equation; Gauge Transformations	216
	24.5 Measurement Process	218
	24.6 Wave-particle Duality	219
	24.7 Schrödinger's Cat: Dead and Alive?	220
25	One-dimensional Problems in Quantum Mechanics	223
	25.1 Bound Systems in a Box (Quantum Well); Parity	224
	25.2 Reflection and Transmission at a Barrier; Unitarity	226
	25.3 Probability Current	228
	25.4 Tunneling	228
26	The Harmonic Oscillator I	231
27	The Hydrogen Atom according to Schrödinger's Wave	
	Mechanics	
	27.1 Product Ansatz; the Radial Function	235
	27.1.1 Bound States $(E < 0)$	
	27.1.2 The Hydrogen Atom for Positive Energies $(E>0)$	
	27.2 Spherical Harmonics	239
28	Abstract Quantum Mechanics (Algebraic Methods) 28.1 The Harmonic Oscillator II:	
	Creation and Destruction Operators	
	28.2 Quantization of the Angular Momenta: Ladder Operators	949

XII	Contents	

	28.3 Unitary Equivalence; Change of Representation	245
29	Spin Momentum and the Pauli Principle (Spin-statistics Theorem) 29.1 Spin Momentum; the Hamilton Operator with Spin-orbit Interaction 29.2 Rotation of Wave Functions with Spin; Pauli's Exclusion Principle	249
30	Addition of Angular Momenta	$\begin{array}{c} 255 \\ 256 \end{array}$
31	Ritz Minimization	259
32	Perturbation Theory for Static Problems	$\begin{array}{c} 261 \\ 263 \end{array}$
33	Time-dependent Perturbations	267
34	Magnetism: An Essentially Quantum Mechanical Phenomenon 34.1 Heitler and London's Theory of the H ₂ -Molecule	271
35	Cooper Pairs; Superconductors and Superfluids	277
36	On the Interpretation of Quantum Mechanics (Reality?, Locality?, Retardation?) 36.1 Einstein-Podolski-Rosen Experiments 36.2 The Aharonov-Bohm Effect; Berry Phases 36.3 Quantum Computing 36.4 2d Quantum Dots 36.5 Interaction-free Quantum Measurement; "Which Path?" Experiments 36.6 Quantum Cryptography	279 281 283 285 287
37	Quantum Mechanics: Retrospect and Prospect	293
38	Appendix: "Mutual Preparation Algorithm" for Quantum Cryptography	297

Part IV Thermodynamics and Statistical Physics		
39	Introduction and Overview to Part IV	
40	Phenomenological Thermodynamics:	
	Temperature and Heat	
	40.1 Temperature	
	40.2 Heat	
	40.3 Thermal Equilibrium and Diffusion of Heat	
	40.4 Solutions of the Diffusion Equation	
41	The First and Second Laws of Thermodynamics 313	
	41.1 Introduction: Work	
	41.2 First and Second Laws: Equivalent Formulations	
	The Maxwell Relation	
	41.4 General Maxwell Relations	
	41.5 The Heat Capacity Differences $C_p - C_V$ and $C_H - C_m \dots 318$	
	41.6 Enthalpy and the Joule-Thomson Experiment; Liquefaction of Air	
	41.7 Adiabatic Expansion of an Ideal Gas	
42	Phase Changes, van der Waals Theory	
	and Related Topics 327	
	42.1 Van der Waals Theory	
	42.2 Magnetic Phase Changes; The Arrott Equation 330	
	42.3 Critical Behavior; Ising Model; Magnetism and Lattice Gas \dots 332	
43	The Kinetic Theory of Gases	
	43.1 Aim	
	43.2 The General Bernoulli Pressure Formula	
	43.3 Formula for Pressure in an Interacting System 341	
44	Statistical Physics	
	44.1 Introduction; Boltzmann-Gibbs Probabilities	
	44.2 The Harmonic Oscillator and Planck's Formula 344	
45	The Transition to Classical Statistical Physics 349	
	45.1 The Integral over Phase Space;	
	Identical Particles in Classical Statistical Physics	
	45.2 The Rotational Energy of a Diatomic Molecule	

46	Advanced Discussion of the Second Law	
	46.1 Free Energy	306
	of the Second Kind	25/
	of the second Kind	304
47	Shannon's Information Entropy	359
48	Canonical Ensembles	
	in Phenomenological Thermodynamics	363
	48.1 Closed Systems and Microcanonical Ensembles	
	48.2 The Entropy of an Ideal Gas	
	from the Microcanonical Ensemble	363
	48.3 Systems in a Heat Bath:	
	Canonical and Grand Canonical Distributions	366
	48.4 From Microcanonical to Canonical and Grand Canonical	
	Ensembles	367
4 9	The Clausius-Clapeyron Equation	369
-0	D. Lastina (CT) and LTD4 L. (D. company)	
50	Production of Low and Ultralow Temperatures; Third Law	971
	Inird Law	3/1
51	General Statistical Physics	
	(Statistical Operator; Trace Formalism)	377
52	Ideal Bose and Fermi Gases	379
53	Applications I: Fermions, Bosons,	
	Condensation Phenomena	383
	53.1 Electrons in Metals (Sommerfeld Formalism)	383
	53.2 Some Semiquantitative Considerations on the Development	
	of Stars	387
	53.3 Bose-Einstein Condensation	391
	53.4 Ginzburg-Landau Theory of Superconductivity	395
	53.5 Debye Theory of the Heat Capacity of Solids	399
	53.6 Landau's Theory of 2nd-order Phase Transitions	403
	53.7 Molecular Field Theories; Mean Field Approaches	405
	53.8 Fluctuations	408
	53.9 Monte Carlo Simulations	411
54	Applications II: Phase Equilibria in Chemical Physics	413
	54.1 Additivity of the Entropy; Partial Pressure;	
	Entropy of Mixing	413
	54.2 Chemical Reactions; the Law of Mass Action	416
	54.3 Electron Equilibrium in Neutron Stars	
	54.4 Gibbs' Phase Rule	419

		Contents	XV
	54.5 Osmotic Pressure	-icing" Salt.	422
55	Conclusion to Part IV		427
Ref	ferences		431
Ind	lex		435