Benjamin Fine Gerhard Rosenberger

Number Theory

An Introduction via the Distribution of Primes

Birkhäuser Boston • Basel • Berlin

Contents

Pre	Preface xi						
1	Intr	duction and Historical Remarks	1				
2	Basic Number Theory						
	2.1	The Ring of Integers	. 7				
	2.2	Divisibility, Primes, and Composites	. 11				
	2.3	The Fundamental Theorem of Arithmetic	. 16				
	2.4	Congruences and Modular Arithmetic	. 21				
		2.4.1 Basic Theory of Congruences	. 22				
		2.4.2 The Ring of Integers Modulo <i>n</i>	. 23				
		2.4.3 Units and the Euler Phi Function	. 26				
		2.4.4 Fermat's Little Theorem and the Order of an Element	. 31				
		2.4.5 On Cyclic Groups	. 34				
	2.5	The Solution of Polynomial Congruences Modulo m	. 37				
		2.5.1 Linear Congruences and the Chinese Remainder Theorem .	. 37				
		2.5.2 Higher-Degree Congruences	. 42				
	2.6	Quadratic Reciprocity	. 45				
3	The Infinitude of Primes						
	3.1	The Infinitude of Primes	. 55				
		3.1.1 Some Direct Proofs and Variations	. 55				
		3.1.2 Some Analytic Proofs and Variations	. 58				
		3.1.3 The Fermat and Mersenne Numbers					
		3.1.4 The Fibonacci Numbers and the Golden Section	. 65				
		3.1.5 Some Simple Cases of Dirichlet's Theorem	. 78				
		3.1.6 A Topological Proof and a Proof Using Codes	. 83				
	3.2	Sums of Squares	. 86				
		3.2.1 Pythagorean Triples	87				
		3.2.2 Fermat's Two-Square Theorem	. 89				
		3.2.3 The Modular Group	94				

		~
V11	1	Contents

		3.2.4	Lagrange's Four-Square Theorem	100
		3.2.5	The Infinitude of Primes Through Continued Fractions	102
	3.3	Dirich	let's Theorem	104
	3.4	Twin I	Prime Conjecture and Related Ideas	121
	3.5	Prime	s Between x and $2x$	122
	3.6	Arithn	netic Functions and the Möbius Inversion Formula	123
4	The		y of Primes	
	4.1		rime Number Theorem: Estimates and History	
	4.2		chev's Estimate and Some Consequences	
	4.3		alent Formulations of the Prime Number Theorem	
	4.4		iemann Zeta Function and the Riemann Hypothesis	
		4.4.1	The Real Zeta Function of Euler	
		4.4.2	Analytic Functions and Analytic Continuation	
		4.4.3	The Riemann Zeta Function	
	4.5		rime Number Theorem	
	4.6		lementary Proof	
	4.7	Some	Extensions and Comments	185
5			Cesting: An Overview	
	5.1		lity Testing and Factorization	
	5.2		g Methods	
		5.2.1	Brun's Sieve and Brun's Theorem	
	5.3	Primal	lity Testing and Prime Records	
		5.3.1	Pseudoprimes and Probabilistic Testing	
		5.3.2	The Lucas-Lehmer Test and Prime Records	
		5.3.3	Some Additional Primality Tests	
	5.4	Crypto	ography and Primes	
		5.4.1	Some Number-Theoretic Cryptosystems	
		5.4.2	Public Key Cryptography and the RSA Algorithm	
	5.5	The A	KS Algorithm	243
6	Prin	nes and	Algebraic Number Theory	253
	6.1		raic Number Theory	
	6.2	-	e Factorization Domains	
		6.2.1	<i>D</i>	
		6.2.2	Principal Ideal Domains	
			Prime and Maximal Ideals	
	6.3	_	raic Number Fields	
		6.3.1	Algebraic Extensions of Q	
		6.3.2	Algebraic and Transcendental Numbers	
		6.3.3	Symmetric Polynomials	
		6.3.4	Discriminant and Norm	
	6.4	Algeb	raic Integers	
		6.4.1	The Ring of Algebraic Integers	296

	Contents	ix
6.4.2	Integral Bases	297
6.4.3	Quadratic Fields and Quadratic Integers	300
6.4.4	The Transcendence of e and π	303
6.4.5	The Geometry of Numbers: Minkowski Theory	306
6.4.6	Dirichlet's Unit Theorem	308
6.5 The	Theory of Ideals	311
6.5.1	Unique Factorization of Ideals	313
6.5.2	An Application of Unique Factorization	319
6.5.3	The Ideal Class Group	321
6.5.4	Norms of Ideals	323
6.5.5	Class Number	326
Bibliography a	nd Cited References	333
Indov		227