

Farid Amirouche

Fundamentals of Multibody Dynamics

Theory and Applications

Birkhäuser
Boston • Basel • Berlin

Contents

Preface	xiii
1 Particle Dynamics: The Principle of Newton's Second Law	1
1.1 Introduction	1
1.2 Vectors	1
1.2.1 Scalar Product	2
1.2.2 Vector Product	3
1.3 Derivative of a Vector	5
1.4 Velocity and Acceleration in Several Coordinates	7
1.5 Dynamics of a System of Particles	15
1.6 Work and Kinetic Energy	17
1.6.1 Conservation of Energy	22
1.6.2 Conservative Forces	23
1.7 Principle of Impulse and Momentum	28
1.8 Angular Momentum	30
1.9 Principle of Virtual Work	32
1.10 Problems	37
2 Rigid-Body Kinematics	41
2.1 Introduction	41
2.2 Vectors Differentiation	41
2.3 First Derivatives and Partial Derivatives	43
2.3.1 Definition of a Derivative	43
2.3.2 Definition of Partial Derivatives	44
2.3.3 Total Derivative of a Vector	44
2.4 Generalized Coordinates	46
2.4.1 Cartesian Coordinates	46
2.4.2 Euler Angles and Direction Cosines	47
2.5 Euler and Rodriguez Formula	54
2.5.1 Euler Parameters	54
2.5.2 Rodriguez Parameters	66
2.6 Angular Velocity	68

2.7	Further Derivation of the Angular Velocity	73
2.8	Angular Velocity and Euler Angles	74
2.9	Angular Velocity and Euler Parameters	75
2.10	Simple Angular Velocity	76
2.11	Angular Velocity and Intermediate Reference Frames	77
2.12	Angular Acceleration	80
2.13	Velocity and Acceleration of a Fixed Point on a Rigid Body	81
2.14	Velocity and Acceleration of a Moving Point on a Rigid Body	89
2.15	Small Rotations	93
2.16	Problems	93
3	Kinematics for General Multibody Systems	107
3.1	Introduction	107
3.2	Configuration Graphs for Treelike Multibody Systems	107
3.3	Generalized Coordinates Partitioning	110
3.4	Transformation Matrices and Their Derivatives for <i>N</i> -Interconnected Rigid Bodies	113
3.4.1	Transformation Matrices	113
3.4.2	Time Derivatives of Transformation Matrices	117
3.5	Angular Velocities and Partial Angular Velocities	119
3.6	Angular Accelerations	126
3.7	Generalized Speeds	128
3.8	Mass Center Velocities of Arbitrary Interconnected Rigid Bodies in Treelike Systems	133
3.9	Mass Center Accelerations of Arbitrary Interconnected Rigid Bodies in Treelike Systems	150
3.10	Modeling of Joints	156
3.10.1	Free Joint	156
3.10.2	Ball-and-Socket Joint	157
3.10.3	Revolute Joint	158
3.11	Problems	159
4	Modeling of Forces in Multibody Systems	181
4.1	Introduction	181
4.2	Forces, Moments and Equivalence Force Systems	181
4.3	Generalized Active Force	183
4.4	Modeling of Springs and Dampers at the Joints	190
4.5	Contact Forces	200
4.6	Gravitational Forces	202
4.7	Generalized Inertia Forces	207
4.8	Inertia Properties	208
4.8.1	Second Moment	208
4.8.2	Product of Inertia	210
4.8.3	Properties of the Product of Inertia	211
4.8.4	Inertia Dyadic	213
4.8.5	Parallel Axes Theorem	215

4.9	Problems	220
5	Equations of Motion of Multibody Systems	225
5.1	Introduction.....	225
5.2	Equations of Motion.....	225
5.3	Derivation of Kane's Equations Through the Principle of Virtual Work	226
5.3.1	Principle of Virtual Work	227
5.4	Automated Form of the Equations of Motion	232
5.4.1	Matrix Representation of the Equations of Motion	232
5.5	Problems	255
5.6	Project	260
6	Hamilton–Lagrange and Gibbs–Appel Equations	287
6.1	Introduction.....	287
6.2	Energy Equations	287
6.2.1	Kinetic Energy	287
6.2.2	Energy of a Rigid Body	289
6.2.3	Work, Potential Energy and Generalized Forces	290
6.3	Lagrange's Equations	293
6.4	Application of Lagrange Equations to Multibody Systems	303
6.5	Relationship Between Kane's and Lagrange Equations	305
6.6	Gibbs–Appel Equations	309
6.7	Hamilton's Equations	312
6.8	Problems	316
7	Handling of Constraints in Multibody Systems Dynamics	319
7.1	Introduction.....	319
7.2	Holonomic Constraints	319
7.3	Nonholonomic Constraints	320
7.4	Constrained Multibody Systems	321
7.5	The Augmented Method	323
7.6	Coordinate Reduction	324
7.7	Pseudo Upper Triangular Decomposition Method	326
7.8	The Zero-Eigenvalue Theorem and Embedding Method	341
7.8.1	The Zero-Eigenvalue Theorem	341
7.8.2	Embedding Method.....	343
7.9	Relation Between the PUTD and the Zero-Eigenvalue Theorem ..	347
7.10	Derivation of the Constraint Equation for Closed Loops	349
7.11	Prescribed Motion	353
7.12	Evaluation of the Constraint Forces	359
7.13	The Rolling Coin Problem: Kinematics, Forces and Constraints ..	373
7.14	Analysis and Simulation of Human Locomotion	382
7.15	Problems	388

8	Numerical Stability of Constrained Multibody Systems	395
8.1	Introduction	395
8.2	Baumgarte Stability Method	395
8.3	Numerical Solution of a Constrained System's Equations	399
8.4	Effect of Constraint Differentiation	400
8.5	Reduction to State-Space Form	401
8.6	Modified PUTD Method: A Gaussian Approach	402
8.7	Regularization of the Vanishing Constraints: The Amrouche–Ider Stabilization Method	406
8.8	Regularization of Linearly Dependent Constraints: The Amrouche–Ider Method	420
9	Linearization and Vibration Analysis of Multibody Systems	429
9.1	Introduction	429
9.2	Linearization of the Equations of Motion	429
9.3	Free Vibration of Continuous Beams: Natural Mode Shapes and Frequencies	440
9.3.1	Transverse Vibration	441
9.3.2	Longitudinal Vibration	445
9.3.3	Torsional Vibration	447
9.4	The Eigenvalue Problem	449
9.5	Rayleigh–Ritz Method	452
9.6	Assumed Modes Method	468
9.7	Forced System Response and Selection of Mode Shapes	468
9.7.1	Selection of Mode Shapes	470
9.8	Numerical Methods for Eigenvalue Problems	472
9.8.1	Jacobi Method	472
9.8.2	Subspace Iteration Method	475
9.9	Problems	479
10	Dynamics of Multibody Systems with Terminal Flexible Links	485
10.1	Introduction	485
10.2	Method of Motion Overlapping	485
10.2.1	Case 1: Transverse Vibration of the Flexible Body	487
10.2.2	Case 2: Longitudinal Vibration of the Flexible Beam	490
10.2.3	Case 3: Transverse Vibration of a Flexible Link Considering Inertia Force and Gravity	492
10.2.4	Case 4: Torsional Vibration of the Flexible Link	493
10.3	Derivation of the Equations of Motion Using the Finite-Element Method	494
10.4	Equations of Motion of an Elastic Beam Undergoing Large Rotation: A 2D FE Formulation	509
10.5	General Equations of Motion of Multibody Systems with Flexible Terminal Links	522
10.6	Six-Dimensional Beam Element Modeling of Terminal Flexible Links in MBS	527

10.7	Analysis of Elastic Beams with Time-Variant Boundary Conditions	533
10.8	Problems	546
11	Dynamic Analysis of Multiple Flexible-Body Systems	551
11.1	Introduction	551
11.2	Topology and Kinematics of Flexible Treelike Systems	551
11.3	Kinetics	557
11.4	An Illustrative Example	564
11.5	Reduction of the Equations of Motion Through Modal Analysis ..	573
11.6	Effect of Geometric Stiffening	576
11.6.1	Geometric Stiffness Matrix of an Isoparametric Brick Element	581
11.7	Dynamic Simulations: Applications	583
11.7.1	Dynamic Simulation of a Space-Based Robotic Manipulator Using Beam Elements	583
11.7.2	Dynamic Simulation of a Three-Flexible-Link Robot Using Three-Dimensional Brick Elements	587
11.8	Summary	593
11.9	Problems	593
12	Modeling of Flexibility Effects Using the Boundary-Element Method 597	
12.1	Introduction	597
12.2	Model Description and Notation	599
12.3	Partial Velocities	600
12.4	Generalized Inertia Forces	602
12.5	Generalized Active Forces	603
12.6	Generalized Constraint Forces	605
12.7	Equations of Motion of a Continuum Body	605
12.8	Linearization of the Equations of Motion	607
12.9	Weighted Residual Statement	607
12.10	Body Forces	614
12.11	Formulation of the Nonlinear Stiffness Matrix	618
12.11.1	Nonlinear Stiffness Matrix due to Boundary Integral ..	619
12.11.2	Nonlinear Stiffness Matrix due to DRM Integral	620
12.12	General Equations of Motion	623
12.13	Numerical Example	627
12.14	Conclusion	632
Appendix A:	Multibody Dynamics Flowchart for the Construction of the Equations of Motion with Constraints	635
Appendix B:	Centroid Location and Area Moment of Inertia	639
Appendix C:	Center of Gravity and Mass Moment of Inertia of Homogeneous Solids	641

xii **Contents**

Appendix D: Symbols Description	645
Appendix E: Units and Conversion	651
References.....	655
Index	681