Volkmar Dierolf

Electronic Defect States in Alkali Halides

Effects of Interaction with Molecular Ions

With 80 Figures and 22 Tables

TU Darmstædt Teilbibliothek Chemie/ Materialwissenschaft

Contents

1	Intr	oduction and Historical Overview	1
	1.1	The Initial Idea	1
	1.2	The Unexpected New Results	2
	1.3	The Dream Comes True	4
	1.4	What to Expect?	4
	Refe	rences	7
2	F C	enters and Rare-Earth Ion Defects	
	in A	Alkali Halides	9
	2.1	F-Center-Related Defects	9
	2.2	- - · · · · · · · · · · · · · · · · · ·	11
			11
			15
		2.2.3 Isolated Sm ²⁺ Ions	16
	Refe	rences	20
3	\mathbf{Pro}	perties of Molecular Defects	23
	3.1	Transition Energies	23
		*	23
		+	24
	3.2		26
		*·= ·-	26
			28
	3.3	Molecules in Alkali Halides	30
	Refe	erences	31
4	$\mathbf{Th}\epsilon$	eoretical Models for E–V Transfer	33
	4.1	-	33
	4.2	Förster–Dexter-Type Models	36
	4.3	Models for Electronic-Vibrational Coupling	38
		4.3.1 Radiative Transitions	
		Including Electronic-Vibrational Coupling	39
		4.3.2 Supermolecule Model (Horizontal Tunneling)	42
		4.3.3 The Sudden Approximation	43

X	Contents

	4.4	4.4 Comparison			
	4.5	Potential Energy Surfaces	47		
	Refe	erences	48		
5	$\mathbf{F_H}$	(CN ⁻) Centers	51		
	5.1	Basic Spectroscopic Properties	51		
		5.1.1 Overview	51		
		5.1.2 Electronic Transitions	52		
		5.1.3 Vibrational Transitions	53		
	5.2	Energy Transfer: Relative and Absolute E–V Transfer Rates .	54		
		5.2.1 E–V Transfer Efficiency in KCl	55		
		5.2.2 E–V Transfer in CsCl:			
		Time-Dependent Measurement of the EL and VL	57		
	5.3	V-E Energy Transfer	60		
	5.4	Vibrational Coupling of F Centers to the CN^- Stretch mode .	61		
	t.	5.4.1 KCl	61		
		5.4.2 CsCl and CsBr	63		
	5.5	The Nature of the Relaxed Excited State	65		
	5.6	Putting It All Together:			
		Comparing E–V Transfer Rates with Theoretical Models	66		
		5.6.1 FD Model	67		
		5.6.2 Horizontal-Tunneling Model	67		
		5.6.3 Relative Transfer Rates	68		
	Refe	erences	69		
6	CN	- Nort to on Anion Vocanov			
U	CN ⁻ Next to an Anion Vacancy Occupied by No Electron or Two Electrons				
	6.1	Background	71 71		
	6.2	Experimental Results	72		
	6.3	Creation Kinetics	74		
	6.4	Shift in Spectral Position	75		
	6.5	Changes in Absorption Cross Section	76		
		erences	76		
	10010	201000			
7	$\mathbf{F_H}$	(OH ⁻) Centers	77		
	7.1	Cs Halides	77		
		7.1.1 Electronic Absorption	77		
		7.1.2 Magnetic Resonance	80		
		7.1.3 Vibrational Properties	81		
		7.1.4 The Relaxed Excited State	81		
	7.2	F _{H2} Center	81		
	7.3	K and Rb Halides: Optical Bistability	82		
		7.3.1 Electronic Absorption	82		
		7.3.2 Vibrational Absorption	84		
		7.3.3 Microscopic Structure	86		

		Contents	XI			
		7.3.4 Entropy-Driven Bistability: Two-Center Model	88			
		7.3.5 Three-Center-Type Model	88			
		7.3.6 Changes in Vibrational Absorption Cross-Section	90			
	7.4	E-V Energy Transfer	91			
	7.5	Dynamic Properties	91			
		rences	93			
	neie	rences	90			
8	Interaction Between F Electrons					
	and	Distant OH ⁻ Molecules	95			
	8.1	The Main Idea	95			
	8.2	OH ⁻ Defects with a Captured Extra Electron	97			
		8.2.1 Absorption Results	97			
		8.2.2 Optically Detected Magnetic Resonance	100			
	8.3	Vibrational Properties of Molecular Electron Traps	101			
		8.3.1 Shift in Transition Energy				
		and Enhancement of Absorption Intensity	101			
		8.3.2 Mechanical and Electrical Anharmonicity				
		8.3.3 Librational Sidebands				
		8.3.4 Summary	105			
	8.4	Electron Trapping by OH ⁻ Pairs				
	8.5	Electron Tunneling from F Centers				
		to OH ⁻ -Related Defects	107			
	8.6	E-V Transfer Between Distant F-centers and OH ⁻ Defects				
	8.7	Conclusions and Outlook				
	8.8	Further OH ⁻ -Type Centers in CsI				
		rences				
	10010	Tolloco	1.2			
9	Ytte	erbium Ions and CN ⁻ Molecules	115			
	9.1	Crystal Growth and Sample Characterization	115			
	9.2	$Yb^{2+}:(CN^{-})_n$ Defect Complexes: Electronic Transitions	116			
		9.2.1 Absorption and Emission Properties	117			
	9.3	Vibrational Transitions of CN ⁻ Molecules				
		Within $Yb^{2+}:(CN^{-})_{n}$ Complexes	122			
		9.3.1 Temperature Dependence	123			
	9.4	Optically Induced Bistability				
	9.5	Center Model				
	9.6	Interpretation of the Spectral Shifts				
		9.6.1 Ligand Feld Strength				
	9.7	Vibrational Luminescence and E–V Energy Transfer				
	• • •	9.7.1 Type of Center Involved in the E-V Energy Transfer				
	9.8	Dynamics of the E-V Transfer				
	0.0	9.8.1 Temperature Dependence				
		9.8.2 Concentration Variation				
	9.9	Properties of Yb ²⁺ Ions with Excited CN ⁻ Neighbors				
	0.0	9 9 1 Experimental Results and Their Interpretation				

XII Contents

		9.9.2	Origin of Enhancement	
			of Electronic Transition Probability	155
	9.10		g It All Together:	
		Compa	aring E–V Transfer Rates with Theoretical Models	156
		9.10.1	The Förster–Dexter Model	
			and the Relative Transfer Rates	157
		9.10.2	FD Model: Absolute Transfer Rates	158
			$thm:contal-Tunneling Model: Relative Transfer Rates \ .$	
			$\label{thm:model:absolute Transfer Rates} \ .$	
	9.11		le Application as a Phosphor	
	Refe	rences		162
10	Eur	opium	and CN ⁻ Molecules	165
			$(\mathrm{CN^-})_n$ Complexes	
			le Application as a Phosphor	
			ary and Interpretation of Experimental Results	
11			and CN ⁻ Molecules	
			uction	
	11.2		lexes Involving a Single CN ⁻ Molecule	
			Spectroscopic Characterization	
			Preliminary Center Model	
			Energy-Level Scheme	
	11.3	_	lexes Involving Several CN ⁻ Molecules	
			Energy-Level Scheme	
	11.4		Energy Transfer	
			Vibrational Luminescence	
			Interpretation	
	D (Summary and Outlook	
	Refe	rences		181
12	Oth	er Def	fect Complexes	183
			ns (Tl ⁺ and Pb ²⁺) and CN ⁻ Molecules	
	12.2	Cu ⁺ I	ons and OH ⁻ Molecules	185
	Refe	rences		185
13	Sun	amanti		19"
ΤÛ			arison of the Defect Systems	
			tial Applications	
			Hai Applications	
	11616	achee.		131
Ind	ov			109