Extreme Financial Risks

From Dependence to Risk Management

Contents

1.	On	the O	rigin of Risks and Extremes	1	
	1.1 The Multidimensional Nature of Risk				
		and D	ependence	1	
	1.2		o Rank Risks Coherently?		
		1.2.1	Coherent Measures of Risks	4	
		1.2.2	Consistent Measures of Risks and Deviation Measures	7	
		1.2.3	Examples of Consistent Measures of Risk	10	
	1.3	Origin	of Risk and Dependence	13	
		1.3.1	The CAPM View	13	
		1.3.2	The Arbitrage Pricing Theory (APT)		
			and the Fama-French Factor Model	18	
		1.3.3	The Efficient Market Hypothesis	20	
		1.3.4	Emergence of Dependence Structures		
			in the Stock Markets	24	
		1.3.5	Large Risks in Complex Systems	29	
	App	endix.		30	
		1.A	Why Do Higher Moments Allow		
			us to Assess Larger Risks?	30	
2	Ma	rginal	Distributions of Returns	33	
	2.1		ations		
	2.2	A Brie	ef History of Return Distributions	37	
		2.2.1	The Gaussian Paradigm	37	
		2.2.2	Mechanisms for Power Laws in Finance	39	
		2.2.3	Empirical Search for Power Law Tails		
			and Possible Alternatives	42	
	2.3	Const	raints from Extreme Value Theory	43	
		2.3.1	Main Theoretical Results on Extreme Value Theory	45	
		2.3.2	Estimation of the Form Parameter and Slow		
			Convergence to Limit Generalized Extreme Value		
			(GEV) and Generalized Pareto (GPD) Distributions	47	

		2.3.3	Can Long Memory Processes Lead to Misleading	
			Measures of Extreme Properties?	51
		2.3.4	GEV and GPD Estimators of the Distributions	
			of Returns of the Dow Jones and Nasdaq Indices	52
	2.4	Fittin	g Distributions of Returns with Parametric Densities	54
		2.4.1	Definition of Two Parametric Families	54
		2.4.2	Parameter Estimation Using Maximum Likelihood	
			and Anderson-Darling Distance	60
		2.4.3	Empirical Results on the Goodness-of-Fits	62
		2.4.4	Comparison of the Descriptive Power	
			of the Different Families	69
	2.5	Discus	ssion and Conclusions	76
		2.5.1	Summary	76
		2.5.2	Is There a Best Model of Tails?	76
		2.5.3	*	78
	\mathbf{App}	endix .		80
		2.A	Definition and Main Properties of Multifractal Processes	80
		2.B	A Survey of the Properties	
				87
		2.C	Asymptotic Variance-Covariance of Maximum	
			Likelihood Estimators of the SE Parameters	91
		2.D	Testing the Pareto Model versus	
			the Stretched-Exponential Model	93
3	Not	ions o	f Copulas	99
	3.1		is Dependence?	
	3.2		tion and Main Properties of Copulas	
	3.3		v Copula Families	
		3.3.1	-	
		3.3.2	Archimedean Copulas	
		3.3.3	Extreme Value Copulas	
	3.4	Unive	rsal Bounds for Functionals	
		of De	pendent Random Variables1	18
	3.5		ation of Dependent Data with a Prescribed Copula 1	
		3.5.1	Simulation of Random Variables Characterized	
			by Elliptical Copulas	20
		3.5.2	Simulation of Random Variables Characterized	
			by Smooth Copulas	
	3.6	Appli	cation of Copulas	
		3.6.1	Assessing Tail Risk	
		3.6.2	Asymptotic Expression of the Value-at-Risk	
		3.6.3	Options on a Basket of Assets	
		3.6.4	Basic Modeling of Dependent Default Risks	
	Δnn	andiv	11	2 Q

		3.A	Simple Proof of a Theorem on Universal Bounds	
			for Functionals of Dependent Random Variables	. 1 3 8
		3.B	Sketch of a Proof of a Large Deviation Theorem	
			for Portfolios Made of Weibull Random Variables	. 140
		3.C	Relation Between the Objective	
			and the Risk-Neutral Copula	. 143
4	Me		of Dependences	
	4.1	Linea	r Correlations	
		4.1.1	Correlation Between Two Random Variables	. 147
		4.1.2	Local Correlation	. 151
		4.1.3	Generalized Correlations Between $N > 2$ Random Variables	150
	4.2	Conce	ordance Measures	
	**.2	4.2.1	Kendall's Tau	
		4.2.2	Measures of Similarity Between Two Copulas	
		4.2.3	Common Properties of Kendall's Tau,	. 100
		4.4.5	Spearman's Rho and Gini's Gamma	161
	4.3	Donos	ndence Metric	
	4.4		rant and Orthant Dependence	
	4.5		Dependence	
	4.0	4.5.1	Definition	
		4.5.1 $4.5.2$	Meaning and Refinement of Asymptotic Independence	
		4.5.2	Tail Dependence for Several Usual Models	
		4.5.4		
	A		Fractical implications	
	App	4.A	Tail Dependence Generated by Student's Factor Model	
		4.A	Tail Dependence Generated by Student's Factor Model	. 102
5	Des		on of Financial Dependences with Copulas	
	5.1	Estim	nation of Copulas	
		5.1.1	Nonparametric Estimation	
		5.1.2	Semiparametric Estimation	
		5.1.3	Parametric Estimation	
		5.1.4	Goodness-of-Fit Tests	
	5.2	Descr	iption of Financial Data in Terms of Gaussian Copulas .	
		5.2.1	Test Statistics and Testing Procedure	. 204
		5.2.2	Empirical Results	
	5.3	Limit	s of the Description in Terms of the Gaussian Copula	
		5.3.1	Limits of the Tests	. 212
		5.3.2	Sensitivity of the Method	
		5.3.3	The Student Copula: An Alternative?	
		5.3.4	Accounting for Heteroscedasticity	
	5.4	Sumn	nary	. 219
	Ann	ondiv		221

XVI Contents

		5.A	Proof of the Existence of a χ^2 -Statistic	
			for Testing Gaussian Copulas	
		5.B	Hypothesis Testing with Pseudo Likelihood	222
6	Mea	asurin	g Extreme Dependences2	227
	6.1	Motiv	ations	
		6.1.1	Suggestive Historical Examples	
		6.1.2	Review of Different Perspectives	
	6.2	Condi	tional Correlation Coefficient	
		6.2.1	Definition	
		6.2.2	Influence of the Conditioning Set	234
		6.2.3	Influence of the Underlying Distribution	
			for a Given Conditioning Set	
		6.2.4	Conditional Correlation Coefficient on Both Variables 2	239
		6.2.5	An Example of Empirical Implementation	240
		6.2.6	Summary	
	6.3	Condi	tional Concordance Measures	247
		6.3.1	Definition	248
		6.3.2	Example	
		6.3.3	Empirical Evidence	251
	6.4		me Co-movements2	
	6.5	Synth	esis and Consequences	256
	App	endix.		261
		6.A	Correlation Coefficient for Gaussian Variables	
			Conditioned on Both X and Y Larger Than u	261
		6.B	Conditional Correlation Coefficient for Student's	
			Variables	266
		6.C	Conditional Spearman's Rho2	270
7	Sun	nmary	and Outlook	271
	7.1		esis	
	7.2	Outlo	ok and Future Directions	274
		7.2.1	Robust and Adaptive Estimation of Dependences 2	274
		7.2.2	Outliers, Kings, Black Swans and Their Dependence 2	276
		7.2.3	Endogeneity Versus Exogeneity	
		7.2.4	Nonstationarity and Regime Switching in Dependence . 2	279
		7.2.5	Time-Varying Lagged Dependence	280
		7.2.6	Toward a Dynamical Microfoundation of Dependences . 2	281
Ref	eren	ces	2	283
т3			_	200