Jean-Michel Muller

Elementary Functions

Algorithms and Implementation

Second Edition

Contents

	List of Figures					
	List of Tables Preface to the Second Edition					
	Pref	ace to	the First Edition	xxi		
1	Intr	oductio	on	1		
2	Some Basic Things About Computer Arithmetic					
	2.1	Floati	ng-Point Arithmetic	9		
		2.1.1	Floating-point formats			
		2.1.2	Rounding modes			
		2.1.3	Subnormal numbers and exceptions			
		2.1.4	ULPs			
		2.1.5	Fused multiply-add operations			
		2.1.6	Testing your computational environment			
		2.1.7	Floating-point arithmetic and proofs			
		2.1.8	Maple programs that compute double-precision			
			approximations	. 17		
	2.2	Redu	ndant Number Systems			
		2.2.1	Signed-digit number systems			
		2.2.2	Radix-2 redundant number systems			
I Ta			ns Based on Polynomial Approximation and/or p, Multiple-Precision Evaluation of Functions	25		
3	Poly	ynomia	al or Rational Approximations	27		
	3.1	Least	Squares Polynomial Approximations	. 28		
		3.1.1	Legendre polynomials	. 29		
		3.1.2	Chebyshev polynomials			
		3.1.3	Jacobi polynomials			

vi Contents

		3.1.4	Laguerre polynomials	31
		3.1.5	Using these orthogonal polynomials in any interval	31
	3.2			32
	3.3	Some	Examples	33
	3.4	Speed	of Convergence	39
	3.5	Reme	z's Algorithm	41
	3.6		nal Approximations	46
	3.7	Actua	l Computation of Approximations	50
		3.7.1	Getting "general" approximations	50
		3.7.2	Getting approximations with special constraints	51
	3.8	Algori	ithms and Architectures for the Evaluation of Polynomials.	54
		3.8.1	The E-method	57
		3.8.2	Estrin's method	58
	3.9	Evalu	ation Error Assuming Horner's Scheme is Used	59
		3.9.1	Evaluation using floating-point additions and	
			multiplications	60
		3.9.2	Evaluation using fused multiply-accumulate	
			instructions	64
	3.10	Misce	llaneous	66
			126 (1)	~
4			d Methods	67
	4.1		luction	67
	4.2		Driven Algorithms	70 71
		4.2.1		
		4.2.2	$\ln(x)$ on $[1,2]$	72 72
	4.2	4.2.3	$\sin(x)$ on $[0, \pi/4]$	73
	4.3		Accurate Tables Method	73
	4.4		Methods Requiring Specialized Hardware	77
		4.4.1	Wong and Goto's algorithm for computing	70
		4.4.2	logarithms	78
		4.4.2	Wong and Goto's algorithm for computing	81
		112	exponentials	
		4.4.3 4.4.4	Ercegovac et al.'s algorithm	
		4.4.5	Bipartite and multipartite methods	83 87
		4.4.5	Wiscentaneous	07
5	Mul	tiple-P	recision Evaluation of Functions	89
	5.1	-	luction	89
	5.2		Few Words on Multiple-Precision Multiplication	90
		5.2.1	Karatsuba's method	91
		5.2.2	FFT-based methods	92
	5.3	Multi	ple-Precision Division and Square-Root	92
		5.3.1	Newton-Raphson iteration	92

Contents

	5.4	Algorithms Based on the Evaluation of			
		Power Series	94		
	5.5	The Arithmetic-Geometric (AGM) Mean	95		
		5.5.1 Presentation of the AGM	95		
		5.5.2 Computing logarithms with the AGM	95		
		5.5.3 Computing exponentials with the AGM	98		
		5.5.4 Very fast computation of trigonometric functions	98		
II	Sh	ift-and-Add Algorithms	101		
6	Intr	oduction to Shift-and-Add Algorithms	103		
	6.1	The Restoring and Nonrestoring Algorithms	105		
	6.2	Simple Algorithms for Exponentials and Logarithms	109		
		6.2.1 The restoring algorithm for exponentials	109		
		6.2.2 The restoring algorithm for logarithms	111		
	6.3	Faster Shift-and-Add Algorithms	113		
		6.3.1 Faster computation of exponentials	113		
		6.3.2 Faster computation of logarithms			
	6.4	Baker's Predictive Algorithm			
	6.5	Bibliographic Notes	131		
7	The CORDIC Algorithm 133				
	7.1	Introduction			
	7.2	The Conventional CORDIC Iteration			
	7.3	Scale Factor Compensation			
	7.4	CORDIC With Redundant Number Systems and a Variable Factor			
		7.4.1 Signed-digit implementation			
		7.4.2 Carry-save implementation			
		7.4.3 The variable scale factor problem			
	7.5	The Double Rotation Method			
	7.6	The Branching CORDIC Algorithm			
	7.7	The Differential CORDIC Algorithm	150		
	7.8	Computation of \cos^{-1} and \sin^{-1} Using CORDIC			
	7.9	Variations on CORDIC	156		
8		U	157		
	8.1	High-Radix Algorithms			
	0.3	8.1.1 Ercegovac's radix-16 algorithms			
	8.2	The BKM Algorithm			
		8.2.1 The BKM iteration			
			164		

viii Contents

		8.2.4	Application to the computation of elementary functions	167
II)	[R	ange R	Reduction, Final Rounding and Exceptions	17 1
9	Ran	ge Red		173
	9.1		luction	
	9.2		and Waite's Method for Range Reduction	
	9.3		ng Worst Cases for Range Reduction?	
		9.3.1		
		9.3.2	Finding worst cases using continued fractions	
	9.4		ayne and Hanek Reduction Algorithm	
	9.5		Modular Range Reduction Algorithm	
		9.5.1	Fixed-point reduction	
		9.5.2	Floating-point reduction	
		9.5.3	Architectures for modular reduction	
	9.6	Alterr	nate Methods	191
10		al Rour		193
	10.1	Introd	duction	193
	10.2	Mono	otonicity	194
	10.3	Corre	ct Rounding: Presentation of the Problem	195
	10.4	Some	Experiments	198
			obabilistic" Approach to the Problem	
	10.6	Uppe:	r Bounds on m	202
	10.7	Obtai:	ned Worst Cases for Double-Precision	203
		10.7.1	Special input values	203
		10.7.2	Lefèvre's experiment	203
11	Mis	cellane	eous	217
	11.1	Excep	otions	217
		11.1.1	NaNs	218
		11.1.2	Exact results	218
	11.2	Notes	s on x^y	220
	11.3	Specia	al Functions, Functions of Complex Numbers	222
12	Exa	mples (of Implementation	22
			ple 1: The Cyrix FastMath Processor	225
			NTEL Functions Designed for the Itanium Processor	
			Sine and cosine	
			Arctangent	
	12.3		IBULTIM Library	
			CRLIBM Library	
			Computation of $\sin(x)$ or $\cos(x)$ (quick phase)	

ix

12.4.2 Computation of $\ln(x)$	231		
Bibliography			
Index	261		