Number Theory in Science and Communication

With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity

Fourth Edition With 99 Figures

Contents

Part I. A Few Fundamentals					
1.	Intr	oduction	1		
		Family of Numbers	4		
	1.1	Fibonacci, Continued Fractions and the Golden Ratio	7		
	1.2	Fermat, Primes and Cyclotomy	9		
	1.3	Euler, Totients and Cryptography	11		
	1.4	Gauss, Congruences and Diffraction	13		
	1.5	Galois, Fields and Codes	14		
2.	The	The Natural Numbers			
	2.1	The Fundamental Theorem	19		
	2.2	The Least Common Multiple	20		
	2.3	Planetary "Gears"	21		
	2.4	The Greatest Common Divisor	21		
	2.5	Human Pitch Perception	23		
	2.6	Octaves, Temperament, Kilos and Decibels	24		
	2.7	Coprimes	26		
	2.8	Euclid's Algorithm	26		
	2.9	The Decimal System Decimated	27		
3.	Prin	Primes			
	3.1	How Many Primes are There?	28		
	3.2	The Sieve of Eratosthenes	29		
	3.3	A Chinese Theorem in Error	30		
	3.4	A Formula for Primes	31		
	3.5	Mersenne Primes	32		
	3.6	Repunits	36		
	3.7	Perfect Numbers	37		
	3.8	Fermat Primes	38		
	3.9	Gauss and the Impossible Heptagon	39		
4.	The	Prime Distribution	41		
	4.1	A Probabilistic Argument	41		
	4.9	The Prime Counting Function $\pi(x)$	42		

	4.3	David Hilbert and Large Nuclei	47
	4.4	Coprime Probabilities	48
	4.5	Primes in Progressions	51
	4.6	Primeless Expanses	53
	4.7	Squarefree and Coprime Integers	54
	4.8	Twin Primes	54
		Prime Triplets	56
	4.9		
	4.10	Prime Quadruplets and Quintuplets	$\begin{array}{c} 57 \\ 58 \end{array}$
	4.11	Primes at Any Distance	
	4.12	Spacing Distribution Between Adjacent Primes	61
	4.13	Goldbach's Conjecture	61
	4.14	Sum of Three Primes	63
Pa	rt II.	Some Simple Applications	
5.	Frac	tions: Continued, Egyptian and Farey	65
	5.1	A Neglected Subject	65
	5.2	Relations with Measure Theory	69
	5.3	Periodic Continued Fractions	70
	5.4	Electrical Networks and Squared Squares	73
	5.5	Fibonacci Numbers and the Golden Ratio	74
	5.6	Fibonacci, Rabbits and Computers	78
	5.7	Fibonacci and Divisibility	81
	5.8	Generalized Fibonacci and Lucas Numbers	81
	5.9	Egyptian Fractions, Inheritance	Ŭ-
	0.0	and Some Unsolved Problems	85
	5.10	Farey Fractions	86
	0.10	5.10.1 Farey Trees	88
		5.10.2 Locked Pallas	92
	5.11	Fibonacci and the Problem of Bank Deposits	93
	5.11	Error-Free Computing	94
	0.12	Error-Free Computing	94
Pa	rt III	. Congruences and the Like	
6.	Line	ear Congruences	99
		Residues	99
	6.2	Some Simple Fields	
	6.3	Powers and Congruences.	
7.		phantine Equations	106
١.	7.1	Relation with Congruences	
	7.1 - 7.2	A Gaussian Trick	
		Nonlinear Diophantine Equations	
	7.3	Nonmear Diophantine Equations	108

	7.4	Triangular Numbers	110
	7.5	Pythagorean Numbers	112
	7.6	Exponential Diophantine Equations	113
	7.7	Fermat's Last "Theorem"	113
	7.8	The Demise of a Conjecture by Euler	115
	7.9	A Nonlinear Diophantine Equation in Physics	
		and the Geometry of Numbers	116
	7.10	Normal-Mode Degeneracy in Room Acoustics	
		(A Number-Theoretic Application)	120
	7.11	Waring's Problem	121
8.	The	Theorems of Fermat, Wilson and Euler	122
	8.1	Fermat's Theorem	
	8.2	Wilson's Theorem	123
	8.3	Euler's Theorem	124
	8.4	The Impossible Star of David	125
	8.5	Dirichlet and Linear Progression	127
— Par	rt IV	. Cryptography and Divisors	
9.		er Trap Doors and Public-Key Encryption	
	9.1	A Numerical Trap Door	
	9.2	Digital Encryption	
	9.3	Public-Key Encryption	
	9.4	A Simple Example	
	9.5	Repeated Encryption	
	9.6	Summary and Encryption Requirements	137
10.	The	Divisor Functions	
	10.1	The Number of Divisors	
	10.2	The Average of the Divisor Function	
	10.3	The Geometric Mean of the Divisors	
	10.4	The Summatory Function of the Divisor Function	
	10.5	The Generalized Divisor Functions	
	10.6	The Average Value of Euler's Function	144
11.	\mathbf{The}	Prime Divisor Functions	
	11.1	The Number of Different Prime Divisors	
	11.2	The Distribution of $\omega(n)$	
	11.3	The Number of Prime Divisors	151
	11.4	The Harmonic Mean of $\Omega(n)$	
	11.5	Medians and Percentiles of $\Omega(n)$	156
	11.6	Implications for Public-Key Encryption	157

12 .	Certified Signatures 1			
	12.1 A Story of Creative Financing	158		
	12.2 Certified Signature for Public-Key Encryption			
19	Primitive Roots	160		
13.				
	13.1 Orders			
	13.2 Periods of Decimal and Binary Fractions			
	13.3 A Primitive Proof of Wilson's Theorem			
	13.4 The Index – A Number-Theoretic Logarithm			
	13.5 Solution of Exponential Congruences			
	13.6 What is the Order T_m of an Integer m Modulo a Prime p ?			
	13.7 Index "Encryption"	170		
	13.8 A Fourier Property of Primitive Roots			
	and Concert Hall Acoustics			
	13.9 More Spacious-Sounding Sound	172		
	13.10 Galois Arrays for X-Ray Astronomy	174		
	13.11 A Negative Property of the Fermat Primes	175		
14.	Knapsack Encryption			
	14.1 An Easy Knapsack			
	14.2 A Hard Knapsack	178		
Par	rt V. Residues and Diffraction			
15.	Quadratic Residues			
	15.1 Quadratic Congruences			
	15.2 Euler's Criterion			
	15.3 The Legendre Symbol			
	15.4 A Fourier Property of Legendre Sequences	185		
	15.5 Gauss Sums	185		
	15.6 Pretty Diffraction	187		
	15.7 Quadratic Reciprocity	187		
	15.8 A Fourier Property of Quadratic-Residue Sequences	188		
	15.9 Spread Spectrum Communication			
	15.10 Generalized Legendre Sequences Obtained			
	Through Complexification of the Euler Criterion	191		
Par	rt VI. Chinese and Other Fast Algorithms			
16	The Chinese Remainder Theorem			
16.	and Simultaneous Congruences	104		
	16.1 Simultaneous Congruences			
	- ro.z - r ne amo-medresembarion. A Villnese Number avstem	1 (9)		

	16.3 16.4 16.5 16.6 16.7	Applications of the Sino-Representation196Discrete Fourier Transformation in Sino198A Sino-Optical Fourier Transformer199Generalized Sino-Representation200Fast Prime-Length Fourier Transform201
17.	Fast 17.1 17.2	Transformation and Kronecker Products203A Fast Hadamard Transform203The Basic Principle of the Fast Fourier Transforms206
18.	Qua 18.1	dratic Congruences
Par	t VI	I. Pseudoprimes, Möbius Transform, and Partitions
19.	Pseu 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8	Pulling Roots to Ferret Out Composites 209 Factors from a Square Root 210 Coin Tossing by Telephone 212 Absolute and Strong Pseudoprimes 214 Fermat and Strong Pseudoprimes 216 Deterministic Primality Testing 216 A Very Simple Factoring Algorithm 218 Factoring with Elliptic Curves 219 Quantum Factoring 219
20.	The 20.1 20.2 20.3 20.4 20.5 20.6	Möbius Function and the Möbius Transform220The Möbius Transform and Its Inverse220Proof of the Inversion Formula222Second Inversion Formula223Third Inversion Formula223Fourth Inversion Formula224Riemann's Hypothesis24and the Disproof of the Mertens Conjecture224Dirichlet Series and the Möbius Function225
21.	Gen 21.1 21.2 21.3 21.4	erating Functions and Partitions 228 Generating Functions 228 Partitions of Integers 230 Generating Functions of Partitions 231 Restricted Partitions 232

Par	Part VIII. Cyclotomy and Polynomials			
22.	Cvc	lotomic Polynomials	236	
	22.1	How to Divide a Circle into Equal Parts		
	22.2	Gauss's Great Insight		
	22.3	Factoring in Different Fields		
	22.4	Cyclotomy in the Complex Plane		
	22.5	How to Divide a Circle with Compass and Straightedge 2		
		22.5.1 Rational Factors of $z^N - 1$		
	22.6	An Alternative Rational Factorization		
	22.7	Relation Between Rational Factors and Complex Roots 2	248	
	22.8	How to Calculate with Cyclotomic Polynomials	249	
23.	Line	ear Systems and Polynomials	251	
	23.1	Impulse Responses		
	23.2	Time-Discrete Systems and the z Transform	252	
	23.3	Discrete Convolution	252	
	23.4	Cyclotomic Polynomials and z Transform	253	
24.	Poly	nomial Theory 2	254	
	24.1	Some Basic Facts of Polynomial Life	254	
	24.2	Polynomial Residues	255	
	24.3	Chinese Remainders for Polynomials	256	
	24.4	Euclid's Algorithm for Polynomials	257	
Par	t IX	. Galois Fields and More Applications		
25.	Galo	ois Fields	260	
	25.1	Prime Order	260	
	25.2	Prime Power Order	260	
	25.3	Generation of $GF(2^4)$	262	
	25.4	How Many Primitive Elements?		
	25.5	Recursive Relations	264	
	25.6	How to Calculate in $GF(p^m)$	266	
	25.7	Zech Logarithm, Doppler Radar		
		and Optimum Ambiguity Functions	267	
	25.8	A Unique Phase-Array Based on the Zech Logarithm		
	25.9	Spread-Spectrum Communication and Zech Logarithms 2	272	
26.	_	ctral Properties of Galois Sequences		
	26.1	Circular Correlation	273	
	26.2	Application to Error-Correcting Codes		
		and Speech Recognition	75	

	26.3	Application to Precision Measurements	277
	26.4	Concert Hall Measurements	
	26.5	The Fourth Effect of General Relativity	
	26.6	Toward Better Concert Hall Acoustics	
	26.7	Higher-Dimensional Diffusors	
	26.8	Active Array Applications	
		v	
27.		dom Number Generators	
	27.1	Pseudorandom Galois Sequences	
	27.2	Randomness from Congruences	
	27.3	"Continuous" Distributions	
	27.4	Four Ways to Generate a Gaussian Variable	
	27.5	Pseudorandom Sequences in Cryptography	292
28.	Way	reforms and Radiation Patterns	293
	28.1	Special Phases	
	28.2	The Rudin-Shapiro Polynomials	
	28.3	Gauss Sums and Peak Factors	
	28.4	Galois Sequences and the Smallest Peak Factors	
	28.5	Minimum Redundancy Antennas	
	28.6	Golomb Rulers	
29.	Ni	aber Theory, Randomness and "Art"	20E
29.	29.1	Number Theory, Randonniess and Art Number Theory and Graphic Design	
	$\frac{29.1}{29.2}$	The Primes of Gauss and Eisenstein	
	29.3	Galois Fields and Impossible Necklaces	
	29.4	"Baroque" Integers	312
Par	t X.	Self-Similarity, Fractals and Art	
30.	Self-	Similarity, Fractals, Deterministic Chaos	
		a New State of Matter	315
	30.1	Fibonacci, Noble Numbers and a New State of Matter	
	30.2	Cantor Sets, Fractals and a Musical Paradox	
	30.3	The Twin Dragon:	
		A Fractal from a Complex Number System	329
	30.4	Statistical Fractals	
	30.5	Some Crazy Mappings	
	30.6	The Logistic Parabola and Strange Attractors	
	30.7	Conclusion	