

Hermann Haken

Information and Self-Organization

A Macroscopic Approach to Complex Systems

Third Enlarged Edition

With 66 Figures

Contents

1. The Challenge of Complex Systems	1
1.1 What Are Complex Systems?	1
1.2 How to Deal with Complex Systems	5
1.3 Model Systems	7
1.4 Self-Organization	10
1.5 Aiming at Universality	11
1.5.1 Thermodynamics	11
1.5.2 Statistical Physics	12
1.5.3 Synergetics	13
1.6 Information	14
1.6.1 Shannon Information: Meaning Exorcised	15
1.6.2 Effects of Information	16
1.6.3 Self-Creation of Meaning	23
1.6.4 How Much Information Do We Need to Maintain an Ordered State?	29
1.7 The Second Foundation of Synergetics	33
2. From the Microscopic to the Macroscopic World	36
2.1 Levels of Description	36
2.2 Langevin Equations	37
2.3 Fokker-Planck Equation	40
2.4 Exact Stationary Solution of the Fokker-Planck Equation for Systems in Detailed Balance	41
2.4.1 Detailed Balance	41
2.4.2 The Required Structure of the Fokker-Planck Equation and Its Stationary Solution	42
2.5 Path Integrals	44
2.6 Reduction of Complexity, Order Parameters and the Slaving Principle	45
2.6.1 Linear Stability Analysis	46
2.6.2 Transformation of Evolution Equations	47
2.6.3 The Slaving Principle	48
2.7 Nonequilibrium Phase Transitions	49
2.8 Pattern Formation	51
3. ... and Back Again: The Maximum Information Principle (MIP) ..	53
3.1 Some Basic Ideas	53
3.2 Information Gain	57

3.3 Information Entropy and Constraints	58
3.4 Continuous Variables	63
4. An Example from Physics: Thermodynamics	65
5. Application of the Maximum Information Principle to Self-Organizing Systems	69
5.1 Introduction	69
5.2 Application to Self-Organizing Systems: Single Mode Laser	69
5.3 Multimode Laser Without Phase Relations	71
5.4 Processes Periodic in Order Parameters	72
6. The Maximum Information Principle for Nonequilibrium Phase Transitions: Determination of Order Parameters, Enslaved Modes, and Emerging Patterns	74
6.1 Introduction	74
6.2 General Approach	74
6.3 Determination of Order Parameters, Enslaved Modes, and Emerging Patterns	76
6.4 Approximations	77
6.5 Spatial Patterns	78
6.6 Relation to the Landau Theory of Phase Transitions. Guessing of Fokker-Planck Equations	79
7. Information, Information Gain, and Efficiency of Self-Organizing Systems Close to Their Instability Points	81
7.1 Introduction	81
7.2 The Slaving Principle and Its Application to Information	82
7.3 Information Gain	82
7.4 An Example: Nonequilibrium Phase Transitions	83
7.5 Soft Single-Mode Instabilities	84
7.6 Can We Measure the Information and the Information Gain?	85
7.6.1 Efficiency	85
7.6.2 Information and Information Gain	86
7.7 Several Order Parameters	87
7.8 Explicit Calculation of the Information of a Single Order Parameter	88
7.8.1 The Region Well Below Threshold	89
7.8.2 The Region Well Above Threshold	90
7.8.3 Numerical Results	93
7.8.4 Discussion	94
7.9 Exact Analytical Results on Information, Information Gain, and Efficiency of a Single Order Parameter	95
7.9.1 The Instability Point	97
7.9.2 The Approach to Instability	98
7.9.3 The Stable Region	99
7.9.4 The Injected Signal	100

7.9.5	Conclusions	101
7.10	The <i>S</i> -Theorem of Klimontovich	102
7.10.1	Region 1: Below Laser Threshold	104
7.10.2	Region 2: At Threshold	104
7.10.3	Region 3: Well Above Threshold	105
7.11	The Contribution of the Enslaved Modes to the Information Close to Nonequilibrium Phase Transitions	107
8.	Direct Determination of Lagrange Multipliers	115
8.1	Information Entropy of Systems Below and Above Their Critical Point	115
8.2	Direct Determination of Lagrange Multipliers Below, At and Above the Critical Point	117
9.	Unbiased Modeling of Stochastic Processes: How to Guess Path Integrals, Fokker-Planck Equations and Langevin-Ito Equations	125
9.1	One-Dimensional State Vector	125
9.2	Generalization to a Multidimensional State Vector	127
9.3	Correlation Functions as Constraints	130
9.4	The Fokker-Planck Equation Belonging to the Short-Time Propagator	132
9.5	Can We Derive Newton's Law from Experimental Data?	133
10.	Application to Some Physical Systems	135
10.1	Multimode Lasers with Phase Relations	135
10.2	The Single-Mode Laser Including Polarization and Inversion	136
10.3	Fluid Dynamics: The Convection Instability	138
11.	Transitions Between Behavioral Patterns in Biology, An Example: Hand Movements	140
11.1	Some Experimental Facts	140
11.2	How to Model the Transition	141
11.3	Critical Fluctuations	147
11.4	Some Conclusions	151
12.	Pattern Recognition. Unbiased Guesses of Processes: Explicit Determination of Lagrange Multipliers	153
12.1	Feature Selection	153
12.2	An Algorithm for Pattern Recognition	159
12.3	The Basic Construction Principle of a Synergetic Computer	161
12.4	Learning by Means of the Information Gain	163
12.5	Processes and Associative Action	165
12.6	Explicit Determination of the Lagrange Multipliers of the Conditional Probability. General Approach for Discrete and Continuous Processes	169
12.7	Approximation and Smoothing Schemes. Additive Noise	174

12.8 An Explicit Example: Brownian Motion	181
12.9 Approximation and Smoothing Schemes. Multiplicative (and Additive) Noise	184
12.10 Explicit Calculation of Drift and Diffusion Coefficients. Examples	185
12.11 Process Modelling, Prediction and Control, Robotics	187
12.12 Non-Markovian Processes. Connection with Chaos Theory	189
12.12.1 Checking the Markov Property	189
12.12.2 Time Series Analysis	190
13. Information Compression in Cognition: The Interplay between Shannon and Semantic Information	195
13.1 Information Compression: A General Formula	195
13.2 Pattern Recognition as Information Compression: Use of Symmetries	197
13.3 Deformations	199
13.4 Reinterpretation of the Results of Sects. 13.1–13.3	201
14. Quantum Systems	203
14.1 Why Quantum Theory of Information?	203
14.2 The Maximum Information Principle	205
14.3 Order Parameters, Enslaved Modes and Patterns	211
14.4 Information of Order Parameters and Enslaved Modes	214
15. Quantum Information	216
15.1 Basic Concepts of Quantum Information. Q-bits	216
15.2 Phase and Decoherence	218
15.3 Representation of Numbers	219
15.4 Register	220
15.5 Entanglement	221
16. Quantum Computation	222
16.1 Classical Gates	222
16.2 Quantum Gates	223
16.3 Calculation of the Period of a Sequence by a Quantum Computer	227
16.4 Coding, Decoding and Breaking Codes	229
16.4.1 A Little Mathematics	230
16.4.2 RSA Coding and Decoding	230
16.4.3 Shor's Approach, Continued	231
16.5 The Physics of Spin 1/2	233
16.6 Quantum Theory of a Spin in Mutually Perpendicular Magnetic Fields, One Constant and One Time Dependent	235
16.7 Quantum Computation and Self-Organization	241
17. Concluding Remarks and Outlook	242
References	244
Subject Index	251