Josef Bigun

Vision with Direction

A Systematic Introduction to Image Processing and Computer Vision

With 146 Figures, including 130 in Color

Contents

_			
Pa	rt I H	uman and Computer Vision	
1	Neu	ronal Pathways of Vision	3
	1.1	Optics and Visual Fields of the Eye	3
	1.2	Photoreceptors of the Retina	5
	1.3	Ganglion Cells of the Retina and Receptive Fields	7
	1.4	The Optic Chiasm	9
	1.5	Lateral Geniculate Nucleus (LGN)	10
	1.6	The Primary Visual Cortex	11
	1.7	Spatial Direction, Velocity, and Frequency Preference	13
	1.8	Face Recognition in Humans	17
	1.9	Further Reading	19
2	Colo	or	21
	2.1	Lens and Color	21
	2.2	Retina and Color	22
	2.3	Neuronal Operations and Color	24
	2.4	The 1931 CIE Chromaticity Diagram and Colorimetry	26
	2.5	RGB: Red, Green, Blue Color Space	30
	2.6	HSB: Hue, Saturation, Brightness Color Space	31
Pa	rt II L	inear Tools of Vision	
3	Disc	rete Images and Hilbert Spaces	35
	3.1	Vector Spaces	35
	3.2	Discrete Image Types, Examples	37
	3.3	Norms of Vectors and Distances Between Points	40
	3.4	Scalar Products	44
	3.5	Orthogonal Expansion	46
	3.6	Tensors as Hilbert Spaces	48
	3.7	Schwartz Inequality, Angles and Similarity of Images	53

X	Contents

4	Conti	nuous Functions and Hilbert Spaces	57
	4.1	Functions as a Vector Space	57
	4.2	Addition and Scaling in Vector Spaces of Functions	58
	4.3	A Scalar Product for Vector Spaces of Functions	59
	4.4	Orthogonality	59
	4.5	Schwartz Inequality for Functions, Angles	60
5	Finite	Extension or Periodic Functions—Fourier Coefficients	61
	5.1	The Finite Extension Functions Versus Periodic Functions	61
	5.2	Fourier Coefficients (FC)	62
	5.3	(Parseval-Plancherel) Conservation of the Scalar Product	65
	5.4	Hermitian Symmetry of the Fourier Coefficients	67
6	Fouri	er Transform—Infinite Extension Functions	69
	6.1	The Fourier Transform (FT)	69
	6.2	Sampled Functions and the Fourier Transform	72
	6.3	Discrete Fourier Transform (DFT)	79
	6.4	Circular Topology of DFT	82
7	Prope	erties of the Fourier Transform	85
	7.1	The Dirac Distribution	85
	7.2	Conservation of the Scalar Product	88
	7.3	Convolution, FT, and the δ	90
	7.4	Convolution with Separable Filters	94
	7.5	Poisson Summation Formula, the Comb	95
	7.6	Hermitian Symmetry of the FT	98
	7.7	Correspondences Between FC, DFT, and FT	99
8	Recor	struction and Approximation	103
	8.1	Characteristic and Interpolation Functions in N Dimensions	103
	8.2	Sampling Band-Preserving Linear Operators	109
	8.3	Sampling Band-Enlarging Operators	114
9	Scales	s and Frequency Channels	119
	9.1	Spectral Effects of Down- and Up-Sampling	
	9.2	The Gaussian as Interpolator	125
	9.3	Optimizing the Gaussian Interpolator	
	9.4	Extending Gaussians to Higher Dimensions	
	9.5	Gaussian and Laplacian Pyramids	
	9.6	Discrete Local Spectrum, Gabor Filters	136
	9.7	Design of Gabor Filters on Nonregular Grids	142
	9.8	Face Recognition by Gabor Filters, an Application	146

Par	t III V	ision of Single Direction	
10	Direc	tion in 2D	153
	10.1	Linearly Symmetric Images	
	10.2	Real and Complex Moments in 2D	
	10.3	The Structure Tensor in 2D	164
	10.4	The Complex Representation of the Structure Tensor	168
	10.5	Linear Symmetry Tensor: Directional Dominance	
	10.6	Balanced Direction Tensor: Directional Equilibrium	171
	10.7	Decomposing the Complex Structure Tensor	173
	10.8	Decomposing the Real-Valued Structure Tensor	175
	10.9	Conventional Corners and Balanced Directions	176
	10.10	The Total Least Squares Direction and Tensors	177
	10.11	Discrete Structure Tensor by Direct Tensor Sampling	180
		Application Examples	186
		Discrete Structure Tensor by Spectrum Sampling (Gabor)	187
	10.14	Relationship of the Two Discrete Structure Tensors	196
		Hough Transform of Lines	199
	10.16	The Structure Tensor and the Hough Transform	202
	10.17	Appendix	205
11	Direc	tion in Curvilinear Coordinates	209
	11.1	Curvilinear Coordinates by Harmonic Functions	209
	11.2	Lie Operators and Coordinate Transformations	213
	11.3	The Generalized Structure Tensor (GST)	
	11.4	Discrete Approximation of GST	221
	11.5	The Generalized Hough Transform (GHT)	224
	11.6	Voting in GST and GHT	226
	11.7	Harmonic Monomials	228
	11.8	"Steerability" of Harmonic Monomials	230
	11.9	Symmetry Derivatives and Gaussians	
	11.10	Discrete GST for Harmonic Monomials	233
	11.11	Examples of GST Applications	236
	11.12	Further Reading	238
	11.13	Appendix	240
12	Direc	tion in ND, Motion as Direction	245
	12.1	The Direction of Hyperplanes and the Inertia Tensor	245
	12.2	The Direction of Lines and the Structure Tensor	
	12.3	The Decomposition of the Structure Tensor	
	12.4	Basic Concepts of Image Motion	255
	12.5	Translating Lines	258
	12.6	Translating Points	259

XZTT	~ .
XII	Contents

	12.8	Affine Motion by the Structure Tensor in 7D	267
	12.9	Motion Estimation by Differentials in Two Frames	270
	12.10	Motion Estimation by Spatial Correlation	272
	12.11	Further Reading	274
	12.12	Appendix	275
13	World	d Geometry by Direction in N Dimensions \dots	277
	13.1	Camera Coordinates and Intrinsic Parameters	277
	13.2	World Coordinates	283
	13.3	Intrinsic and Extrinsic Matrices by Correspondence	287
	13.4	Reconstructing 3D by Stereo, Triangulation	293
	13.5	Searching for Corresponding Points in Stereo	300
	13.6	The Fundamental Matrix by Correspondence	305
	13.7	Further Reading	307
	13.8	Appendix	308
—	-4 TX7 X7	the AM W. I. Dr. of	
	rt IV V	ision of Multiple Directions	
14	Group	Direction and N-Folded Symmetry	311
	14.1	Group Direction of Repeating Line Patterns	311
	14.2	Test Images by Logarithmic Spirals	314
	14.3	Group Direction Tensor by Complex Moments	315
	14.4	Group Direction and the Power Spectrum	318
	14.5	Discrete Group Direction Tensor by Tensor Sampling	320
	14.6	Group Direction Tensors as Texture Features	324
	14.7	Further Reading	326
Par	t V Gr	ouping, Segmentation, and Region Description	
15	Reduc	ring the Dimension of Features	320
	15.1	Principal Component Analysis (PCA)	320
	15.2	PCA for Rare Observations in Large Dimensions	335
	15.3	Singular Value Decomposition (SVD)	338
16	Group	oing and Unsupervised Region Segregation	341
	16.1	The Uncertainty Principle and Segmentation	341
	16.2	Pyramid Building	344
	16.3	Clustering Image Features—Perceptual Grouping	345
	16.4	Fuzzy C-Means Clustering Algorithm	347
	16.5	Establishing the Spatial Continuity	348
	16.6	Boundary Refinement by Oriented Butterfly Filters	351
	16.7	Texture Grouping and Boundary Estimation Integration	354
	16.8	Further Reading	356

		Cor	ntents	XII
17	Regio	on and Boundary Descriptors		35
	17.1	Morphological Filtering of Regions		35
	17.2	Connected Component Labelling		36
	17.3	Elementary Shape Features		36
	17.4	Moment-Based Description of Shape		36
	17.5	Fourier Descriptors and Shape of a Region		37
18	Conc	cluding Remarks		37
Ref	erence	es		37
Ind	ex			39