

CONTENTS

1	INTRODUCTION.....	1
1.1	General considerations.....	1
1.2	Random variables and stochastic processes.....	3
1.3	Basic flow and structural axis definitions.....	6
1.4	Structural design quantities.....	9
2	SOME BASIC STATISTICAL CONCEPTS IN WIND ENGINEERING.....	13
2.1	Parent probability distributions, mean value and variance.....	13
2.2	Time domain and ensemble statistics.....	15
2.3	Threshold crossing and peaks.....	27
2.4	Extreme values.....	29
2.5	Auto spectral density.....	33
2.6	Cross-spectral density.....	38
2.7	The connection between spectra and covariance.....	40
2.8	Coherence function and normalized co-spectrum.....	42
2.9	The spectral density of derivatives of processes.....	43
2.10	Spatial averaging in structural response calculations.....	44
3	STOCHASTIC DESCRIPTION OF TURBULENT WIND.....	53
3.1	Mean wind velocity.....	53
3.2	Single Point Statistics of Wind Turbulence.....	58
3.3	The spatial properties of wind turbulence.....	63
4	BASIC THEORY OF STOCHASTIC DYNAMIC RESPONSE CALCULATIONS.....	69
4.1	Modal Analysis and Dynamic Equilibrium Equations.....	69
4.2	Single mode single component response calculations.....	76
4.3	Single mode three component response calculations.....	80
4.4	General multi-mode response calculations.....	84
5	WIND AND MOTION INDUCED LOADS.....	91
5.1	The buffeting theory.....	91
5.2	Aerodynamic derivatives.....	97
5.3	Vortex shedding.....	102

6 WIND INDUCED STATIC AND DYNAMIC RESPONSE CALCULATIONS.....	109
6.1 Introduction.....	109
6.2 The mean value of the response.....	113
6.3 Buffeting response.....	116
6.4 Vortex shedding.....	142
7 DETERMINATION OF CROSS SECTIONAL FORCES.....	157
7.1 Introduction.....	157
7.2 The mean value.....	163
7.3 The background quasi-static part.....	163
7.4 The resonant part.....	182
8 MOTION INDUCED INSTABILITIES.....	195
8.1 Introduction.....	195
8.2 Static divergence.....	199
8.3 Galloping.....	200
8.4 Dynamic stability limit in torsion.....	202
8.5 Flutter.....	203
9 THE BUFFETING THEORY IN A FINITE ELEMENT FORMAT.....	209
9.1 Introduction.....	209
9.2 The element mechanical properties.....	212
9.3 The wind load.....	220
9.4 The global analysis.....	230
9.5 The time invariant static solution.....	234
9.6 The quasi-static solution.....	234
9.7 Dynamic response calculations in frequency domain.....	238
9.8 Frequency domain response calculations in modal coordinates.....	246
9.9 Dynamic response calculations in time domain.....	251
Appendix A: TIME DOMAIN SIMULATIONS.....	263
A.1 Introduction.....	263
A.2 Simulation of single point time series.....	264
A.3 Simulation of spatially non-coherent time series.....	267
A.4 The Cholesky decomposition.....	275
Appendix B: DETERMINATION OF THE JOINT ACCEPTANCE FUNCTION.....	277
B.1 Closed form solutions.....	277
B.2 Numerical solutions.....	278
Appendix C: AERODYNAMIC DERIVATIVES FROM SECTION MODEL DECAYS.....	281

Appendix D: DETERMINATION OF INDICIAL FUNCTIONS FROM AERODYNAMIC DERIVATIVES.....	289
REFERENCES.....	297
INDEX.....	299