V. D. Liseikin

A Computational Differential Geometry Approach to Grid Generation

Second Edition

With 81 Figures
Including 3 Color Figures

Contents

Part I Geometric Background to Grid Technology							
1	Introductory Notions						
	1.1		sentation of Physical Geometries	5			
	1.2		al Concepts Related to Grids	8			
		1.2.1	Grid Cells	8			
		1.2.2	Requirements Imposed on Cells and Grids	10			
	1.3	Grid	Generation Models	16			
		1.3.1	Mapping Approach	17			
		1.3.2	Requirements Imposed on Mathematical Models	21			
		1.3.3	Algebraic Methods	22			
		1.3.4	Differential Methods	24			
		1.3.5	Variational Methods	28			
	1.4	Comp	orehensive Codes	32			
2	Ger	neral (Coordinate Systems in Domains	35			
	2.1		i Matrix	35			
	2.2	Coord	linate Lines, Tangential Vectors, and Grid Cells	36			
	2.3		linate Surfaces and Normal Vectors	38			
	2.4	Repre	esentation of Vectors Through the Base Vectors	40			
	2.5	-	c Tensors	42			
		2.5.1	Covariant Metric Tensor	42			
		2.5.2	Line Element	43			
		2.5.3	Contravariant Metric Tensor	44			
		2.5.4	Relations Between Covariant and Contravariant				
			Elements	45			
	2.6	Cross	Product	46			
		2.6.1	Geometric Meaning	47			
		2.6.2	Relation to Volumes	48			
		2.6.3	Relation to Base Vectors	49			
	2.7	Relati	ions Concerning Second Derivatives	49			
		2.7.1	Christoffel Symbols of Domains	50			
		2.7.2	Differentiation of the Jacobian	52			
		2.7.3	Basic Identity	52			

3	Ger	metry	y of Curves	55
٥.	3.1	•	es in Multidimensional Space	55
	0.1	3.1.1	Definition	55
		3.1.2	Basic Curve Vectors	55
	3.2		es in Three-Dimensional Space	57
	J	3.2.1	Basic Vectors	57
		3.2.2	Curvature	58
		3.2.3	Torsion	59
4			nensional Geometry	61
	4.1	_	ent and Normal Vectors and Tangent Plane	61
	4.2		Groundform	63
		4.2.1	Covariant Metric Tensor	63
		4.2.2	Contravariant Metric Tensor	65
	4.3		ralization to Riemannian Manifolds	67
		4.3.1	Definition of the Manifolds	67
		4.3.2	Example of a Riemannian Manifold	70
		4.3.3	Christoffel Symbols of Manifolds	71
	4.4	Tenso	ors	74
		4.4.1	Definition	75
		4.4.2	Examples of Tensors	76
		4.4.3	Tensor Operations	79
	4.5	Basic	Invariants	81
		4.5.1	Beltrami's Differential Parameters	81
		4.5.2	Measure of Relative Spacing	82
		4.5.3	Measure of Relative Clustering	84
		4.5.4	Mean Curvature	85
	4.6	Geom	netry of Hypersurfaces	85
		4.6.1	Normal Vector to a Hypersurface	85
		4.6.2	Second Fundamental Form	90
		4.6.3	Surface Curvatures	90
		4.6.4	Formulas of the Mean Curvature	91
	4.7	Relati	ions to the Principal Curvatures of Two-Dimensional	
		Surfac	ces	106
		4.7.1	Second Fundamental Form	106
		4.7.2	Principal Curvatures	
Pa	rt II	Algor	rithms and Applications of Advanced Grid Technolo	gy
5	Cor	mpreh	ensive Grid Models	117
-	5.1		ulation of Differential Grid Generators	
	~	5.1.1	Beltramian Operator	
			Boundary Value Problem for Grid Equations	

		5.1.3	Interpretation as a Multidimensional Equidistribution	
			Principle	
		5.1.4	Realization of Specified Grids	
		5.1.5	Extension to Diffusion Equations	
		5.1.6	Familiar Grid Equations	
	5.2	Variat	tional Formulations	
		5.2.1	Functional of Grid Smoothness	
		5.2.2	Diffusion Functional	139
	5.3	Form	ulation of Monitor Metrics	140
		5.3.1	General Formulas for Covariant Elements	141
		5.3.2	Formulations of Contravariant Elements	148
		5.3.3	Specification of Individual Monitor Metrics	150
		5.3.4	Monitor Metrics for Generating Balanced Grids	158
6	Inve	erted :	Equations	161
	6.1	Gener	ral Forms of Equations	161
		6.1.1	Relations to Beltrami Equations	161
		6.1.2	Resolved Grid Equations	163
		6.1.3	Fluxes-Sources Equations	165
	6.2	Equat	tions for Classical Monitor Metrics	168
		6.2.1	Domain Grid Equations for a Diagonal Monitor Metric	169
		6.2.2	Domain Grid Equations with Respect to the Metric	
			of a Monitor Surface	173
		6.2.3	Surface Grid Equations for Some Special Monitor	
			Metrics	176
		6.2.4	Surface Grid Equations with Respect to the Metric	
			of a Monitor Surface	178
	6.3	Role	of the Mean Curvature	182
		6.3.1	Mean Curvature and Inverted Beltrami Grid Equations	182
		6.3.2	Mean Curvature and Control of Grid Clustering	185
	6.4	Pract	ical Grid Equations	207
		6.4.1	Equations for Generating Grids on Curves	
		6.4.2	Equations for Generating Grids on Two-Dimensional	
			Surfaces	210
		6.4.3	Equations for Generating Grids in Domains	214
7	Nu	merica	al Implementation of Grid Generators	219
	7.1	Metho	od of Fractional Steps	
		7.1.1	One-Dimensional Equation	219
		7.1.2	Two-Dimensional Equations	222
		7.1.3	Three–Dimensional Equations	232
	7.2	Metho	od of Minimization of Energy Functional	236
		7.2.1	Generation of Fixed Grids	
		7.2.2	Adaptive Grid Generation	242
		7.2.3	Numerical Examples	255

XIV Contents

7.3	Gener	ation of Multi-Block Grids
	7.3.1	Block-Structured Grids
7.4	cation of Layer-Type Functions to Grid Codes 267	
	7.4.1	Specification of Basic Functions
	7.4.2	Numerical Grids Aligned to Vector-Fields 268
	7.4.3	Application to Grid Clustering
	7.4.4	Application to Formulation of Weight Functions
		for Generating Balanced Grids
Referen	ices	
Index		