Masahito Hayashi

Quantum Information

An Introduction

With 14 Figures and 10 Tables

Contents

Pr	ologu	e	1
1	Mat	thematical Formulation of Quantum Systems	9
	1.1	Quantum Systems and Linear Algebra	10
	1.2	State and Measurement in Quantum Systems	13
	1.3	Quantum Two-Level Systems	17
	1.4	Composite Systems and Tensor Products	18
	1.5	Matrix Inequalities and Matrix Monotone Functions	22
2	Info	ormation Quantities and Parameter Estimation	
	in (Classical Systems	27
	2.1	Information Quantities in Classical Systems	28
		2.1.1 Entropy	28
		2.1.2 Relative Entropy	29
		2.1.3 Mutual Information	33
		2.1.4 The Independent and Identical Condition	
		and Rényi Entropy	36
	2.2	Extensions to Quantum Systems	40
	2.3	Geometry of Probability Distribution Family	45
		2.3.1 Inner Product for Random Variables	
		and Fisher Information	45
		2.3.2 Exponential Family and Divergence	48
	2.4	Estimation in Classical Systems	52
	2.5	Type Method and Large Deviation Evaluation	57
		2.5.1 Type Method and Sanov's Theorem	57
		2.5.2 Cramér Theorem and Its Application to Estimation	59
	2.6	Related Books	67
3	-	antum Hypothesis Testing and Discrimination	
		Quantum States	69
	3.1	Two-State Discrimination in Quantum Systems	70

XII	Contents

	3.2	Discrimination of Plural Quantum States	72	
	3.3	Asymptotic Analysis of State Discrimination	74	
	3.4	Hypothesis Testing and Stein's Lemma	77	
	3.5	Hypothesis Testing by Separable Measurements	82	
	3.6	Proof of Direct Part of Stein's Lemma	84	
	3.7	Information Inequalities and Proof of Converse Part of		
		Stein's Lemma	86	
	3.8	Historical Note	90	
4	Clas	ssical-Quantum Channel Coding		
		essage Transmission)	93	
	$\stackrel{\circ}{4}.1$	Formulation of the Channel Coding Process		
		in Quantum Systems	94	
		4.1.1 Transmission Information in C-Q Channels		
		and Its Properties	95	
		4.1.2 C-Q Channel Coding Theorem	96	
	4.2	Coding Protocols with Adaptive Decoding and Feedback	99	
	4.3	Channel Capacities Under Cost Constraint	101	
	4.4	A Fundamental Lemma	102	
	4.5	Proof of Direct Part of C-Q Channel Coding Theorem	104	
	4.6	Proof of Converse Part of C-Q Channel Coding Theorem	109	
	4.7	Pseudoclassical Channels	113	
	4.8	Historical Note	115	
5		e Evolution and Trace-Preserving Completely		
		itive Maps	117	
	5.1	Description of State Evolution in Quantum Systems	117	
	5.2	Examples of Trace-Preserving Completely Positive Maps	124	
	5.3	State Evolutions in Quantum Two-Level Systems	129	
	5.4	Information-Processing Inequalities in Quantum Systems	133	
	5.5	Entropy Inequalities in Quantum Systems	137	
	5.6	Historical Note	143	
6	Quantum Information Geometry			
		Quantum Estimation	145	
	6.1	Inner Products in Quantum Systems	146	
	6.2	Metric-Induced Inner Products	151	
		Geodesics and Divergences	157	
	6.4	Quantum State Estimation	165	
	6.5	Large Deviation Evaluation	170	
	6.6	Multiparameter Estimation	173	
	6.7	Historical Note	182	
7	Qua	entum Measurements and State Reduction	185	
	7.1	State Reduction Due to Quantum Measurement	185	

		Content	s XI
	7.2	Uncertainty and Measurement	19
	7.3	Measurements with Negligible State Demolition	
	7.4	Historical Note	
8	Enta	anglement and Locality Restrictions	20
	8.1	Entanglement and Local Quantum Operations	
	8.2	Fidelity and Entanglement	
	8.3	Entanglement and Information Quantities	
	8.4	Entanglement and Majorization	
	8.5	Distillation of Maximally Entangled States	
	8.6	Dilution of Maximally Entangled States	
	8.7	Unified Approach to Distillation and Dilution	
	8.8	Dilution with Zero-Rate Communication	
	8.9	State Generation from Shared Randomness	
	8.10	Positive Partial Transpose (PPT) Operations	
	8.11	Examples	
	0.11	8.11.1 2×2 System	
		8.11.2 Werner State	
		8.11.3 Isotropic State	
	8.12	•	
	0.1_		
9	Ana	lysis of Quantum Communication Protocols	27
	9.1	Quantum Teleportation	27
	9.2	C-Q Channel Coding with Entangled Inputs	27
	9.3	C-Q Channel Coding with Shared Entanglement	28
	9.4	Quantum Channel Resolvability	29
	9.5	Quantum-Channel Communications with an Eavesdroppe	er . 29
		9.5.1 C-Q Wiretap Channel	29
		9.5.2 Relation to BB84 Protocol	30
		9.5.3 Secret Sharing	30
		9.5.4 Distillation of Classical Secret Key	30
		9.5.5 Proof of Direct Part	
		of C-Q Wiretap Channel Coding Theorem	30
		9.5.6 Proof of Converse Part	
		of C-Q Wiretap Channel Coding Theorem	30
	9.6	Channel Capacity for Quantum-State Transmission	30
	9.7	Examples	
		9.7.1 Group Covariance Formulas	
		9.7.2 d-Dimensional Depolarizing Channel	
		9.7.3 Transpose-Depolarizing Channel	
		9.7.4 Generalized Pauli Channel	
		9.7.5 PNS Channel	
		9.7.6 Erasure Channel	
		9.7.7 Phase-Damping Channel	
	9.8	Historical Note	

XIV Contents

10	Sou	rce Coding in Quantum Systems	321
	10.1	Four Kinds of Source Coding Schemes	
		in Quantum Systems	322
	10.2	Quantum Fixed-Length Source Coding	324
	10.3	Construction of a Quantum Fixed-Length Source Code	327
	10.4	Universal Quantum Fixed-Length Source Codes	330
	10.5	Universal Quantum Variable-Length Source Codes	331
	10.6	Mixed-State Case	332
	10.7	Compression by Classical Memory	336
	10.8	Compression by Shared Randomness	339
	10.9	Relation to Channel Capacities	342
	10.10	Historical Note	344
\mathbf{A}	Lim	its and Linear Algebra	347
	A.1	Limits	347
	A.2	Singular Value Decomposition and Polar Decomposition	349
	A.3	Norms of Matrices	351
	A.4	Convex Functions and Matrix Convex Functions	353
	A.5	Proof and Construction of Stinespring and Choi–Kraus	
		Representations	357
В	Pro	ofs of Theorems and Lemmas	363
	B.1	Proof of Theorem 3.1	363
	B.2	Proof of Theorem 8.2	364
	B.3	Proof of Theorem 8.3	367
	B.4	Proof of Theorem 8.8 for Mixed States	367
	B.5	Proof of Theorem 8.9 for Mixed States	368
		B.5.1 Proof of Direct Part	368
		B.5.2 Proof of Converse Part	370
	B.6	Proof of Theorem 9.3	371
	B.7	Proof of Lemma 9.4	374
	B.8	Proof of Lemma 10.3	380
\mathbf{C}	Hin	ts and Brief Solutions to Exercises	383
Re	feren	ces	401
Inc	lex	,	423