ecular Biotechnology

Developmental Biology of Neoplastic Growth

With 23 Figures, 7 in Color, and 7 Tables

Springer

Professor Dr. Alvaro Macieira-Coelho INSERM 73 bis, rue du Maréchal Foch 78000 Versailles France

E 6/02 Vol 40

MAX-PLANCK-INSTITUT

Isolarich-Bonhoutfor-Institut

Otto-Huhn-Bibliothek

For biophysikalische Chemia

ISSN 0079-6484 ISBN-10 3-540-25009-3 Springer-Verlag Berlin Heidelberg New York ISBN-13 978-3-540-25009-8

Library of Congress Control Number: 2005920705

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media springeronline.com

© Springer Berlin Heidelberg 2005 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Production: Pro Edit GmbH, Heidelberg, Germany Typesetting: SDS, Leimen, Germany Cover desing: design & production GmbH, Heidelberg, Germany

Printed on acid free paper

39/3150Re

543210

also play a role in tumor nce of cancers in extreme layed in Werner, Fanconi,

pends inter alia on the inive and inductive effect of ites during embryonic degulator of the microenvi-Deviations from the noriman life span can create ble for the transformation creation of these field efregulatory role of the difsue and of their degradationality of fibroblast popne normal development of Hence, strong emphasis is

nated during early postnahildhood. Later, deregulaource of tumor initiation. been identified as tumor oplastic growth; this con-

regulation of normal dens involved in the regularolled recombination, can

between deviations from in this volume. New thersuggested. It is seen that ole in order to identify the the war against cancers.

Alvaro Macieira-Coelho

gy of organized growth. Proc R

opmental biology. Prentice Hall,

r. Cancer Res 45:2935–2942 Nature 135:606–608

Contents

The Hed J. Vesterş	lgehog Signaling Pathway in Cancer	1
1	Introduction	1
2	The Hedgehog Signaling Pathway	1
2.1	Synthesis and Processing of Hh Protein	2
2.2	Movement of Hh Protein	2
2.3	Reception of Hh Signaling	4
2.4	Intracellular Signal Transduction	5
3	Hh Signaling in Tumor Formation and Growth	6
3.1	Defects in Hh Signaling Causes Nevoid Basal-Cell	
	Carcinoma Syndrome	6
3.2	Experiments with Animal Models Link Hh Signaling	
	to Tumorigenesis	7
3.3	Hh Signaling in Sporadic Cancers	7
3.3.1	A Subset of Sporadic Cancers Have Mutations	
	in Genes Involved in Hh Signaling	8
3.3.2	Expression Analysis of Hh Signaling Genes	
	Suggests Diverse Mechanisms of Involvement in Cancer	8
3.4	Molecular Mechanisms	
	for Hh-Stimulated Tumor Growth	11
3.4.1	SHH Stimulates Stem Cell-Like Progenitor	
	Cell Proliferation	11
3.4.2	Do Tumors Arise from Transformation of Stem Cells?	11
3.4.3	Molecular Targets of Hh Signaling	12
4	Small-Molecule Hh Signaling Antagonists –	
		15
4.1		16
4.2	,	16
5		17
	References	18

/III	Contents

	Pases and Cancer	29
1 2 3 4 5 5 5.1 5.2 5.3 6 7	Introduction . Rho Proteins and Tumorigenesis . Elevated Rho GTPase Signaling in Tumorigenesis . Upstream Regulation of Rho GTPases . Downstream Signaling Pathways . Rho GTPases and Cell-Cycle Progression . Rho GTPases and Cell Survival . Rho GTPases and Invasion/Metastasis . Cross Talk Between Rac1 And Wnt Signaling Pathways . Rho GTPases as Therapeutic Targets . Future Directions . References .	29 32 34 36 36 39 40 43 44 46 47
Develop	mental Biology of Fibroblasts and Neoplastic Disease y-Boyé	55
1 2 2.1 2.2 2.2.1 2.2.2 3	Introduction	55 55 56 57 57 59
3.1	in a Two-Dimensional (2-D) Culture Model Differences Associated with Cytoskeletal	60
3.2	and ECM Components	61 63
3.3 3.4	Behavioral Dissimilarities Among MFs Diversity Associated with Cell Surface	65
4	and Secreted Molecules	66 67
4.1 4.2	Quantitative Variation of Gene Expression Discrimination of Fibroblast Subtypes by Multivariate Analysis of Gene Expression	67 68
5 5.1 5.2	What Really Are Fibroblasts?	69 69 71

29 genesis 40 ng Pathways . . 46 47 tic Disease 55 57 57 63 67

Contents

Contents

5.3

6	Attempts to Study Fibroblast-Epithelial Cell Interaction in a Novel Dimension
and Neo	racellular Matrix During Normal Development plastic Growth
1	Introduction
2	Extracellular Matrix During Development 80
2.1	Fibronectins in Development 83
3	Laminin Isoforms in Tumor Progression 84
3.1	Fibronectin in Malignant Growth
4	Proteolytic Degradation of Matrix Components,
-	Generation of Biologically Active Peptides: Matricryptins 88
5	Tumor Growth and Matrix Biosynthesis 90
6	Role of Receptor Signaling in Cell Matrix Interaction
	During Normal Development and Tumor Growth 91
6.1	The Elastin-Laminin Receptor
7	Glycosaminoglycans and Proteoglycans
	in Normal Development and Tumor Progression 95
8	Discussion and Conclusions
	References
	Tumor: Starting Off the Kidney All Over Again? 107
M. Little	
1	Wilms' Tumor and the WT1 Gene
2	A Role for Other Genes and Chromosomal Regions
	in Wilms' Tumor
3	Setting the Stage - Normal Kidney Development 111
4	A Case for Disrupted Development
4.1	Histology Suggesting a Recapitulation of Development 114
4.2	Nephrogenic Rests
4.3	Presentation and Location
4.4	The Potential Role of WT1 Gene in MET
4.5	Continued Expression of Early Markers
	of Kidney Development
5	Lessons to be Learned
5.1	Teratomatous Behavior in Wilms' Tumor
5.2	Persistence of a Stem Cell or Multipotential Progenitor? 121

Evidence for Renal Stem Cells in the Adult Kidney 124

IX

X	Content	S
5.4	Lack of Clonogenicity of Wilms' Tumor	5
5.5	A Window of Opportunity?	
	References	
	llar Teratomas: Back to Pluripotent Stem Cells	3
	ura, K. Murayama, T. Nakamura, S. Watanabe,	
H. Ume	ehara, M. Tomooka, T. Nakano	
1	Introduction	
2	Cellular Basis of Teratoma Formation	
2.1	Teratomas in the Mouse Model	
2.1.1	The 129/Sv Mouse	5
2.1.2	Origin of Teratomas	
2.2	Human Testicular Cancers	
2.3	Environmental Influences on Teratomas	7
3	EG Cells	7
3.1	Behavior of PGCs in Culture	7
3.2	PGC Growth Factors	8
3.3	Generation of EG Cells	8
3.4	Human EG Cells	9
3.5	Genomic Imprinting in PGCs and EG Cells 140	0
4	Genetic and Molecular Bases of Teratoma Formation 14	1
4.1	Genetic Traits and Mendelian Inheritance Factors 14	1
4.2	Genetic Control of Teratomas in Mice	1
4.2.1	Ter Locus	1
4.2.2	PI3 Kinase Signaling Pathway	2
4.2.3	Tumor Suppressor Trp53	2
4.2.4	Oct-4	
4.2.5	Genetic Interactions: Identification	
	of the Tgct1 and Pgct1 Loci	4
4.3	Genetic Control of Testicular Cancer in Humans 14	4
5	Perspectives: Implications for Stem Cell Biology 14	5
	References	5
Tumor	Suppressors APC and VHL: Gatekeepers	
	ntestine and Kidney	1
	lles, E.E. Voest	
1	Introduction and Background	1
2	Colorectal Cancer: Current Understanding	
_	of the Molecular Mechanism	2
2.1	WNT/β-Catenin Signaling	
2.2	Stepwise CRC Progression	

Contents	Content	is .	XI
125	2.3	The APC Protein	157
125	2.4	APC in Cytoskeletal Dynamics	
126	2.5	Architectural Changes in the Intestine	
	3	Clear Cell Renal Carcinoma: Current Understanding	
		of the Molecular Mechanism	162
ls 133	3.1	The von Hippel-Lindau (VHL) Disease	162
	3.2	HIF Signaling	
	3.3	Stepwise RCC Progression	
	3.4	VHL Regulates Microtubule Stability	167
133	3.5	Renal Cysts: Precursors to RCC?	169
135	3.6	VHL Mouse Models	169
135	4	Discussion	170
135	4.1	APC and VHL: Overlap in Function	
135	4.2	Balancing Acts: Signaling vs. Cytoskeleton Regulation	
136		References	
137			
137			
137	Hormo	onal and Stromal Regulation	
138	of Nor	mal and Neoplastic Prostatic Growth	183
138		icke, Y. Wang, T. Kurita, S.W. Hayward, G.R. Cunha	
139			
s 140	1	Introduction	183
Formation 141	2	Prostatic Growth and Development	
Factors 141	2.1	Mesenchymal-Epithelial Interactions	
141		in Prostatic Development	184
141	2.2	Bud Formation	
142	2.3	Prostate Lobes and Regions	185
142	2.4	Androgens and Prostatic Development	
143	2.5	Stromal-Epithelial Interactions in Mature Prostate	
	2.6	Smooth Muscle of the Prostate	
144	2.7	Estrogen Action in the Prostate	193
ımans 144	2.8	Prostatic Epithelial Cytodifferentiation	
ology 145	3	Prostate Cancer	
146	3.1	The Role of Stroma in Carcinogenesis:	
		a Historical Perspective	195
	3.2	Stromal-Epithelial Interactions During	
		Prostate Cancer Progression	198
151	3.3	Role of Carcinoma-Associated Fibroblasts	
		in Progression of Human Prostate Cancer	200
	3.4	The Role of Steroid Hormones and Stroma	
151		in Prostate Cancer Progression	202
received to the de de description of the terms	3.5	Androgens and Prostate Cancer	
152	3.6	Estrogens and Prostate Cancer	203
153	3.7	Mechanisms of Microenvironmental	
154		Influences During Carcinogenesis	204

XII	Conte	ents
4	Conclusion	
Develop	stic Growth Through the pmental Stages of the Organism	217
1	Developmentally and Nondevelopmentally	
	Related Events in the Natural History of Cancers	
1.1	Childhood Cancers	218
1.2	Cancers in Adolescents	219
1.3	Cancers of the Reproductive Stage	219
1.4	Cancers of the Postreproductive Stage	
1.5	Cancers During Senescence	
2	Putative Mechanisms of Developmentally	
	Related Events in the Natural History of Cancers	225
2.1	Cell-Related Mechanisms	
2.1.1	Cellular Susceptibility to Carcinogens	
2.1.2	Stem Cells	
2.1.3	The Cellular Environment	
2.2	Molecularly -Related Mechanisms	
	References	
Subject	Index	251