Contents

Preface to the First Edition xiii **Preface to the Second Edition** xv **Preface to the Third Edition** *xvii* **Preface to the Fourth Edition** *xix*

About Atomic Physics and Radiation 1
Classical Physics 1
Discovery of X Rays 1
Some Important Dates in Atomic and Radiation Physics 2
Important Dates in Radiation Protection 6
Sources and Levels of Radiation Exposure 10
Suggested Reading 12
Atomic Structure and Atomic Radiation 15
The Atomic Nature of Matter (ca. 1900) 15
The Rutherford Nuclear Atom 17
Bohr's Theory of the Hydrogen Atom 19
Semiclassical Mechanics, 1913–1925 24
Quantum Mechanics 27
The Pauli Exclusion Principle 32
Atomic Theory of the Periodic System 33
Molecules 35
Solids and Energy Bands 38
Continuous and Characteristic X Rays 39
Auger Electrons 43
Suggested Reading 45
Problems 47
Answers 52
The Nucleus and Nuclear Radiation 55
Nuclear Structure 55
Nuclear Binding Energies 58
Alpha Decay 61
Beta Decay (β^-) 64

viii	Contents	
	3.5	Gamma-Ray Emission 67
	3.6	Internal Conversion 70
	3.7	Orbital Electron Capture 72
	3.8	Positron Decay (β^+) 74
	3.9	Suggested Reading 78
	3.10	Problems 78
	3.11	Answers 81
	4	Radioactive Decay 83
	4.1	Activity 83
	4.2	Exponential Decay 83
	4.3	Specific Activity 87
	4.4	Serial Radioactive Decay 89
	4.5	Natural Radioactivity 94
	4.6	Radon and Radon Daughters 96
	4.7	Suggested Reading 100
	4.8	Problems 101
	4.9	Answers 106
	5	Interaction of Heavy Charged Particles with Matter 109
	5.1	Energy-Loss Mechanisms 109
	5.2	Maximum Energy Transfer in a Single Collision 111
	5.3	Single-Collision Energy-Loss Spectra 113
	5.4	Stopping Power 115
	5.5	Semiclassical Calculation of Stopping Power 116
	5.6	The Bethe Formula for Stopping Power 120
	5.7	Mean Excitation Energies 121
	5.8	Table for Computation of Stopping Powers 122
	5.9	Stopping Power of Water for Protons 124
	5.10	Range 125
	5.11	Slowing-Down Time 130
	5.12	Limitations of Bethe's Stopping-Power Formula 131
	5.13	Suggested Reading 132
	5.14	Problems 133
	5.15	Answers 136
	6	Interaction of Electrons with Matter 139
	6.1	Energy-Loss Mechanisms 139
	6.2	Collisional Stopping Power 139
	6.3	Radiative Stopping Power 144
	6.4	Radiation Yield 145
	6.5	Range 147
	6.6	Slowing-Down Time 149
	6.7	Examples of Electron Tracks in Water 150
	6.8	Suggested Reading 154

6.9	Problems 154
6.10	Answers 157
7	Phenomena Associated with Charged-Particle Tracks 159
7.1	Delta Rays 159
7.2	Restricted Stopping Power 159
7.3	Linear Energy Transfer (LET) 162
7.4	Specific Ionization 163
7.5	Energy Straggling 163
7.6	Range Straggling 166
7.7	Multiple Coulomb Scattering 168
7.8	Suggested Reading 169
7.9	Problems 170
7.10	Answers 172
8	Interaction of Photons with Matter 173
8.1	Interaction Mechanisms 173
8.2	Photoelectric Effect 173
8.3	Energy-Momentum Requirements for Photon Absorption by an
	Electron 176
8.4	Compton Effect 176
8.5	Pair Production 185
8.6	Photonuclear Reactions 185
8.7	Attenuation Coefficients 186
8.8	Energy-Transfer and Energy-Absorption Coefficients 191
8.9	Calculation of Energy Absorption and Energy Transfer 196
8.10	Suggested Reading 199
8.11	Problems 200
8.12	Answers 206
9	Neutrons, Fission, and Criticality 209
9.1	Introduction 209
9.2	Neutron Sources 209
9.3	Classification of Neutrons 213
9.4	Interactions with Matter 214
9.5	Elastic Scattering 215
9.6	Neutron-Proton Scattering Energy-Loss Spectrum 218
9.7	Reactions 222
9.8	Energetics of Threshold Reactions 225
9.9	Neutron Activation 228
9.10	Fission 230
9.11	Criticality 231
9.12	Suggested Reading 234
9.13	Problems 234
9.14	Answers 238

X	Contents
	•

10	Methods of Radiation Detection 241
10.1	Ionization in Gases 241
10.1	Ionization in Gases 244 Ionization in Semiconductors 253
10.2	Scintillation 266
10.4	Photographic Film 274
10.4	Thermoluminescence 278
10.5	Other Methods 280
10.7	Neutron Detection 285
10.7	Suggested Reading 295
10.9	Problems 295
10.10	Answers 300
10.10	Miswels 500
11	Statistics 303
11.1	The Statistical World of Atoms and Radiation 303
11.2	Radioactive Disintegration—Exponential Decay 303
11.3	Radioactive Disintegration—a Bernoulli Process 304
11.4	The Binomial Distribution 307
11.5	The Poisson Distribution 311
11.6	The Normal Distribution 314
11.7	Population and Sample Parameters 319
11.8	Central Limit Theorem 321
11.9	Error and Error Propagation 323
11.10	Counting Radioactive Samples 324
11.11	Minimum Significant Measured Activity—Type-I Errors 330
11.12	Minimum Detectable True Activity—Type-II Errors 334
11.13	Criteria for Radiobioassay, HPS Nl3.30-1996 338
11.14	Instrument Response 339
11.15	Monte Carlo Simulation of Radiation Transport 344
11.16	Suggested Reading 350
11.17	Problems 351
11.18	Answers 361
12	Radiation Dosimetry 365
12.1	Introduction 365
12.2	Quantities and Units 366
12.3	Measurement of Exposure 369
12.4	Measurement of Absorbed Dose 372
12.5	Measurement of X- and Gamma-Ray Dose 374
12.6	Neutron Dosimetry 375
12.7	Dose Measurements for Charged-Particle Beams 380
12.8	Determination of LET 381
12.9	Other Dosimetric Concepts and Quantities 389
12.10	Suggested Reading 392
12.11	Problems 393
12.12	Answers 401

13	Chemical and Biological Effects of Radiation 403
13.1	Time Frame for Radiation Effects 403
13.2	Physical and Prechemical Chances in Irradiated Water 403
13.3	Chemical Stage 405
13.4	Examples of Calculated Charged-Particle Tracks in Water 406
13.5	Chemical Yields in Water 409
13.6	Biological Effects 411
13.7	Sources of Human Data 414
13.8	The Acute Radiation Syndrome 422
13.9	Delayed Somatic Effects 424
13.10	Irradiation of Mammalian Embryo and Fetus 427
13.11	Genetic Effects 428
13.12	Radiation Biology 431
13.13	Dose–Response Relationships 433
13.14	Factors Affecting Dose Response 438
13.15	Suggested Reading 443
13.16	Problems 445
13.17	Answers 450
14	Radiation-Protection Criteria and Exposure Limits 451
14.1	Objective of Radiation Protection 451
14.2	Elements of Radiation-Protection Programs 451
14.3	The NCRP and ICRP 453
14.4	NCRP/ICRP Dosimetric Quantities 454
14.5	Risk Estimates for Radiation Protection 458
14.6	Current Exposure Limits of the NCRP and ICRP 459
14.7	Occupational Limits in the Dose-Equivalent System 463
14.8	The "2007 ICRP Recommendations" 466
14.9	ICRU Operational Quantities 467
14.10	Probability of Causation 468
14.11	Suggested Reading 469
	Other Suggested Reading 470
14.12	Problems 470
14.13	Answers 473
15	External Radiation Protection 475
15.1	Distance, Time, and Shielding 475
15.2	Gamma-Ray Shielding 475
15.2	Shielding in X-Ray Installations 482
15.4	Protection from Beta Radiation 494
15.5	Neutron Shielding 496
15.6	Suggested Reading 499
15.7	Problems 500
15.7	Answers 508

di	Content

16	Internal Dosimetry and Radiation Protection 511
16.1	Objectives 511
16.2	ICRP Publication 89 512
16.3	Methodology 513
16.4	ICRP Publication 100 Human Alimentary Tract Model 518
16.5	ICRP Publication 66 Human Respiratory Tract Model 521
16.6	Organ Activities as Functions of Time 525
16.7	Specific Absorbed Fraction, S coefficient, and Committed
	Quantities 529
16.8	Number of Transformations in Source Organs over 50 years 532
16.9	Explicit Consideration of Cells at Risk 533
16.10	Dosimetric Coefficients for Submersion in a Radioactive Gas Cloud 535
16.11	Effective Dose Coefficients for Occupational Intakes of
	Radionuclides 538
16.12	Suggested Reading 538
16.13	Problems 544
16.14	Answers 545

Appendix A Physical Constants 547

Appendix B Units and Conversion Factors 549

Appendix C Some Basic Formulas of Physics (MKS and CGS Units) 551

Classical Mechanics 551

Relativistic Mechanics (units same as in classical mechanics) 551

Electromagnetic Theory 552

Appendix D Selected Data on Nuclides 553

Appendix E Statistical Derivations 565

Binomial Distribution 565

Mean 565

Standard Deviation 565

Poisson Distribution 566

Normalization 567

Mean 567

Standard Deviation 567

Normal Distribution 568

Error Propagation 569

Index *571*