Michel Chipot

Elliptic Equations: An Introductory Course

Contents

Pr	eface	ii					
Pa	art I	Basic Techniques					
1	Hilbert Space Techniques						
	1.1	The projection on a closed convex set					
	1.2	The Riesz representation theorem					
	1.3	The Lax-Milgram theorem					
	1.4	Convergence techniques					
	Exerc	ises					
2	A Survey of Essential Analysis						
	2.1	L^p -techniques					
	2.2	Introduction to distributions					
	2.3	Sobolev Spaces					
	Exerc	ises					
3	Weak	Formulation of Elliptic Problems					
	3.1	Motivation					
	3.2	The weak formulation					
	Exerc	ises					
4	Ellipt	ic Problems in Divergence Form					
	4.1	Weak formulation					
	4.2	The weak maximum principle					
	4.3	Inhomogeneous problems					
	Exerc	$_{ m cises}$					
5	Singu	lar Perturbation Problems					
	5.1	A prototype of a singular perturbation problem 5					
	5.2	Anisotropic singular perturbation problems 6					
	Exerc	iises					

vi Contents

6	Proble	ems in Large Cylinders						
	6.1	A model problem						
	6.2	Another type of convergence						
	6.3	The general case						
	6.4	An application						
	Exerc	ises						
7	Periodic Problems							
	7.1	A general theory						
	7.2	Some additional remarks						
	Exerc	ises						
8	Homo	genization						
	8.1	More on periodic functions						
	8.2	Homogenization of elliptic equations						
		8.2.1 The one-dimensional case						
		8.2.2 The n -dimensional case						
	Exerc	ises						
9	Eigen	values						
	9.1	The one-dimensional case						
	9.2	The higher-dimensional case						
	9.3	An application						
	Exerc	ises						
10	Nume	erical Computations						
	10.1	The finite difference method						
	10.2	The finite element method						
	Exerc	ises						
Pa	rt II	More Advanced Theory						
11	Nonli	near Problems						
	11.1	Monotone methods						
	11.2	Quasilinear equations						
	11.3	Nonlocal problems						
	11.4	Variational inequalities						
	Evere							

Contents

12	L^{∞} -estimates					
	12.1 Some simple cases	77				
	12.2 A more involved estimate	80				
	12.3 The Sobolev–Gagliardo–Nirenberg inequality	83				
	12.4 The maximum principle on small domains	87				
		88				
12	Linear Elliptic Systems					
10	- · · · · · · · · · · · · · · · · · · ·	91				
	_	91 97				
	-	91 02				
	Exercises	02				
14	The Stationary Navier-Stokes System					
	14.1 Introduction	03				
	14.2 Existence and uniqueness result	05				
	Exercises	08				
15	Some More Spaces					
	-	11				
		$\frac{-1}{12}$				
		 15				
		$\frac{16}{16}$				
16	Regularity Theory					
		17				
		21				
	5 , v	24				
		27				
	Exercises	29				
17	The p-Laplace Equation					
	17.1 A minimization technique	31				
	17.2 A weak maximum principle and its consequences 2	37				
	17.3 A generalization of the Lax-Milgram theorem	39				
	Exercises	45				
1 ♀	The Strong Maximum Principle					
10	18.1 A first version of the maximum principle					
		41 52				
		55				
	**	99 59				
	POXECUSES					

19	Probl	ems in the Whole Space
	19.1	The harmonic functions, Liouville theorem
	19.2	The Schrödinger equation
	Exerc	ises
Ap	pendi	x: Fixed Point Theorems
	A .1	The Brouwer fixed point theorem
	A.2	The Schauder fixed point theorem
	Exerc	ises
Bil	oliogra	phy 281
Inc	lex .	