Lev Dorman

Cosmic Rays in Magnetospheres of the Earth and other Planets

Contents

	Measurements of Cosmic Ray Geomagnetic Effects	
1.1	The First Measurements of CR Latitude Effect in Expeditions	
	from Holland to Java and Problems in their Interpretation	
1.2	The First Correct Explanation of CR Latitude Survey Results	
	and Nature of CR; Compton and Millikan's CR Latitude	
	Surveys	
1.3	The First Determination of Planetary Distribution of CR Intensity	
	at Sea Level; Longitude Geomagnetic Effect	
1.4	The First Measurements of the CR Latitude Effect	
	in the Stratosphere	
1.5	East-West CR Geomagnetic Effect and Determination of the Sign	
	of Primary Charged Particles	
Cosi	nic Rays in the Dipole Geomagnetic Field	
2.1	Dipole Approximation of Geomagnetic Field	
	and Geomagnetic Equator	
	2.1.1 Polar Aurora and Störmer's Theory	
	2.1.2 Equations for Particle Moving in Dipole Field	
	and their Integrals	
2.2	Principles of Störmer's Theory	
2.3	Störmer's Cone of Forbidden Trajectories	
2.4	Lemaitre and Vallarta CR Allowed Cones in the Dipole	
	Geomagnetic Field; Existence of Penumbra Region	
2.5	Drift Hamiltonian for a Dipole Magnetic Field	
	2.5.1 The Matter of Problem	
	2.5.2 Drift Hamiltonian	
	2.5.3 Three Cases of the Choice of Parameters	
	2.5.4 The Conditions for Drift Approximation	

	2.6	Symplectic Method for the Tracing of CR Particle Motion	
		in a Dipole Magnetic Field	21
		2.6.1 The Matter of Problem	21
		2.6.2 Hamiltonian Description of Energetic Charged Particle	
		Motion in a Dipole Magnetic Field	23
		2.6.3 Symplectic Integration Method of Calculations	25
		2.6.4 Comparison with the Standard Runge–Kutta Method	27
		2.6.5 Main Results and Discussion	28
	2.7	Effective Cutoff Rigidity in Dipole Approximation	29
	2.8	Checking of Dipole Model by Measurements of CR Equator	32
	2.9	The Checking of Dipole Model by Direct Cutoff Rigidity	
		Measurements	34
	2.10	Checking of Dipole Model by Data on CR Variations	35
	2.11	Initial Interpretations of the Differences Between CR	
		and Geomagnetic Equators	35
	2.12	Impact Zones, Asymptotic Directions, and Acceptance Cones	
		in the Dipole Magnetic Field	36
	2.13	Seasonal and Daily Variation of the Position of Impact Zones	
		in Dipole Approximation	41
	2.14	Asymptotic Accepted Cones and Expected Counting Rates of CR	
		Detectors; Focusing Properties of Geomagnetic Field	42
		- · · · · · · · · · · · · · · · · · · ·	
3	Cosn	nic Rays in the Real Geomagnetic Field	51
	3.1	Inner and Outer Sources of the Real Geomagnetic Field;	
		Changing in Time	51
	3.2	Presentation of the Real Geomagnetic Field by Series of Spherical	
		Harmonics; Gauss Coefficients	,52
	3.3	Relative Role of Spherical Harmonics in the Formation	
		of the Geomagnetic Field from Internal Sources	55
•	3.4	Analytical Methods of Trajectory Calculations in the Real	•
		Geomagnetic Field	56
		3.4.1 General Equation	56
		3.4.2 Störmer Method	57
		3.4.3 Alfvén Method	60
		3.4.4 Peculiarities at High Latitudes; Using Boltzmann	
		Equation	63
		3.4.5 The Case of High CR Energy Density in the Outer	
		Magnetosphere and the Self-Consistent	
		Nonlinear Problem	63
		3.4.6 Regions of Applicability of Analytical Methods	64
	3.5	Main Methods of Numerical Calculation of Charged-Particle	
		Trajectories in the Real Geomagnetic Field	64
		3.5.1 Gauss Coefficients and Expected Accuracy of Numerical	
		Calculation of Trajectories in the Real Geomagnetic	
		Field; Comparison with that Expected	
		for Dipole Field	64

	3.5.2	Störmer's Method of Numerical Calculation	
		of Trajectories in Dipole Geomagnetic Field:	
		Why it cannot be Used for Real Geomagnetic Field	67
	3.5.3	Method Runge-Kutta of Fourth Order for Numerical	
		Calculations of CR Trajectories in Real	
		Geomagnetic Field	67
	3.5.4	The Choice of the Value of the Step of Numerical	•
		Integration: The Gill's Modification	69
	3.5.5	Kelsall's Modification of the Runge-Kutta Method	70
	3.5.6	The Merson's Modification of the Runge-Kutta	
		Method	70
_	3.5.7	The Stability of CR Trajectory Integration and Control	
		of Accuracy	71
	3.5.8	Numerical CR Trajectory Integration in Spherical	
		Geographical System of Coordinates	72
	3.5.9	Divergence-Free Magnetic Field Interpolation	
		and Symplectic Method of Charged-Particle	
		Trajectory Integration	75
	3.5.10	Symplectic Tracing of High-Energy Charged Particles	
		in the Inner Magnetosphere	.77
3.6	Asymp	totic Directions, Impact Zones, and Acceptance Cones	
		Geomagnetic Field Including the Higher Harmonics	85
	3.6.1	Examples for Different CR Stations	85
	3.6.2	Classification of Stations by their Acceptance Cones	86
	3.6.3	Acceptance Cones for Russian and Former Soviet	
		Net of Stations	88
	3.6.4	Asymptotic Directions for the Worldwide Net	
		of CR Stations	90
	3.6.5	Asymptotic Directions for Solar CR During	
•		Some Great Events	90
	3.6.6	Asymptotic Directions for Several Selected CR	
		Stations	90
3.7	On the	Connection of CR Cutoff Rigidities in the Real	
		ignetic Field with the L-Parameter of McIlwain	92
	3.7.1	Results for Dipole Field	92
	3.7.2	Results for Trajectory Calculations for Quiet Time	93
	3.7.3	Using the Relation between R_c and McIlwain	
		L-Parameter for Estimation of R_c Variations during	
		Disturbed Periods	98
	3.7.4	Estimation of R_c for Any Altitude on the Basis	
		of the Relationship Between R_c and L	98
	3.7.5	Global Rigidity Cutoff Maps Based on the Relation	_
		Between R_c and L	99
	3.7.6	Calculations of R_c and L for Different Models:	
		Companion	101

3.8	Planeta	ry Distribution of Cutoff Rigidities at Altitude 20 km	102
	3.8.1	Offset Dipole and CR Cutoff Rigidity Coordinates	102
	3.8.2	CR Vertical Cutoff Rigidity Planetary Distribution	
		for the Epoch 1955.0	104
	3.8.3	CR Vertical Cutoff Rigidity Planetary Distributions	
		for Epochs 1965.0 and 1975.0	106
	3.8.4	The Change of CR Vertical Cutoff Rigidity Planetary	,
		Distribution During 20 Years, from 1955 to 1975	106
	3.8.5	CR Vertical Cutoff Rigidity Planetary Distribution	
		for Epoch 1980	106
	3.8.6	CR Vertical Cutoff Rigidity Planetary Distribution	
		for Epoch 1990.0	106
	3.8.7	CR Vertical Cutoff Rigidity Planetary Distribution	
		for Epoch 1995.0	107
	3.8.8	CR Vertical Cutoff Rigidity Planetary Distribution	
		for Epoch 2000.0	107
3.9	CR Eff	ective Cutoff Rigidity Planetary Distribution	
		ellite Altitudes	107
3.10	Cutoff 1	Rigidities for the Worldwide Network of CR Stations	109
	3.10.1	Calculations of Cutoff Rigidities for CR Stations	
		and Checking by Data on CR Variations	109
	3.10.2	Comparison of Different Models of Calculation	110
	3.10.3	Comparison of Different Models of the Geomagnetic	
		Field	111
	3.10.4	Cutoff Rigidities for Inclined Directions	111
3.11	The CR	R Penumbral Effects in the Real Geomagnetic Field	111
	3.11.1	The CR Penumbra in Dependence of Delineated	
		Value	111
	3.11.2	The Concept of the First Forbidden Band in the CR	
		Penumbra	113
	3.11.3	Penumbral Width in Dependence of Vertical Cutoff	
		Rigidity for Different Epochs	114
	3.11.4	Effective Vertical Cutoff Rigidities for Different CR	
		Detectors and Types of CR Variations	114
3.12	CR Rig	gidity Transmittance Functions	119
	3.12.1	The Concept of the Transmittance Function and Two	
		Methods of Calculation	119
	3.12.2	The Dependence of Transmittance Function Calculation	
		Accuracy from the Delineated Value	12
	3.12.3	The Dependence of Transmittance Function Calculation	
		Accuracy from the Number of Azimuthal Directions	122
	3.12.4	On the Influence of Ionization Losses	
		on the Transmittance Function	122

*	3.12.5	On the Checking of the Theoretically Calculated	
	,	CR Rigidity Transmittance Functions by Balloon	
	-	Experiments	1
	3.12.6	On Checking the Theoretically Calculated CR Rigidity	
	-	Transmittance Functions by Satellite Experiments	- [1
	3.12.7	Transmittance Function Approach to Disentangle	
		Primary from Secondary CR Fluxes in the Penumbra	
		Region	1
3.13	Oblique	ely Incident Particles and Apparent Cutoff Rigidities	1
3.14		tion of the Geomagnetic Cutoff Rigidity Angle	
		ution with the GEANT-3 Computing Program using the	
	Data of	the International Geomagnetic Reference Field	
	3.14.1	Importance of the Exact Knowledge of the CR	
		Cutoff Rigidity Angle Distribution for the Problems	
		of Atmospheric Neutrino and Other Secondary Particles	
	*	Generated in the Earth's Atmosphere	
	3.14.2	Using the Backtracking Method for the Precise	
		Calculation of the Geomagnetic Cutoff Rigidities	
	3.14.3	Calculations and Results for the Planetary and Angle	
		Distributions of CR Geomagnetic Cutoff Rigidity	
	3.14.4	Comparison with AMS Measurements	
,		of the Geomagnetic Cutoff on Shuttle	
3.15	Geoma	gnetic Field Influence on Secondary CR Generated	
		opagated in the Atmosphere	
	3.15.1	On the Possible Geomagnetic Effects in Secondary CRs	
	3.15.2	The Main Conditions for Calculations and Principal	
		Sources	
	3.15.3	•	
		with and without Allowance for the Geomagnetic	
		Field	
	3.15.4	Expected Differential Energy Spectra N(E) of Secondary	
× ·		Neutrons and Muons at Sea Level and at $H = 5 km$	
		from Primary CR Protons with Energy 3 and 10 GeV	
		According to Calculations with and Without	
		Geomagnetic Field Influence on Their Propagation	
		in the Atmosphere	
	3.15.5	Differential Energy Spectra of Neutrons, Protons,	
		Charged Pions and Muons at Sea Level and Altitudes	
		5, 10, 15 km Generated from Primary Protons	
		with Energies 3 and 10 GeV According to Calculations	
		Taking into Account the Geomagnetic Field Influence	
		on Secondary CR Particles Propagation	
	3.15.6	On the Detector's Integral Multiplicity Taking Account	
		of Geomagnetic Field Influence on Secondary CR	
		Doutiele Deservation	

xviii Contents

	3.15.7	On Checking Geomagnetic Field Effects on Secondary	
		CRs During their Propagation in the Atmosphere	
		using Data from High-Latitude CR Stations	150
3.16 -	On the I	nfluence of IMF on the CR Entry into the Earth's	
	Magneto	sphere	151
	3.16.1	The Matter of Problem	151
	3.16.2	The MHD Model of the Magnetosphere for Different	
		IMF Conditions	151
	3.16.3	Calculations of CR Particle Trajectories	154
	3.16.4	Particle Distribution in Velocity Space	155
	3.16.5	How the Magnetosphere Reaches a Quasi-Steady	
		Configuration Consistent with Each IMF Direction	156
	3.16.6	Calculation Results for IMF in a Southward	
		Orientation	156
	3.16.7	Calculation Results for IMF in a Dawnward	
		Orientation	159
	3.16.8	Calculation Results for IMF in a Northward	
		Orientation	161
	3.16.9	Comparison of the Time-Dependent	
		and Time-Independent Cases	164
	3.16.10	On the Energy Change of Particles Entering	
		Inside the Magnetosphere	166
	3.16.11	Demonstration of the Magnetospheric Configuration's	
		Control of the Entry of High-Energy Particles	170
		On the ³ He Ion Trajectories for Southward IMF	173
		Main Results and Discussion	173
3.17		tion of Protons in the Energy Range 0.1-50 MeV through	
		h's Bow Shock, MagnetoSheath, and Magnetopause	
	Inside th	ne Magnetosphere	174
	3.17.1	The Matter of Problem	174
	3.17.2	Three Categories of Energetic Protons Incoming	
		to the Earth	175
	3.17.3	Energetic Proton Propagation through Bow Shock	
		with Shock-Drift Acceleration	176
	3.17.4	Energetic Particles Propagation through Bow-Shock	
	,	with Diffusive Shock Acceleration	177
	3.17.5	MHD Simulation	177
	3.17.6	The Grid System for Simulation	178
	3.17.7	The Efficiency of the Shock-Drift Acceleration	178
,	3.17.8	Calculation of Proton Trajectories for Three Regions	179
	3.17.9	Results for the Shock-Drift Acceleration at the Bow	
		Shock (Case A)	180
	3.17.10	Energetic Particle Entry into the Magnetosphere	
		and Expected Polar Map of Proton Precipitation	100

		3.17.11	Relation Between Proton Entry and Shock-Drift	
			Acceleration	184
		3.17.12	Statistical Results for Proton Entry and Shock-Drift	
			Acceleration	187
		3.17.13	Results for Large Solar Wind Density Increase	
			(Case B)	187
		3.17.14	Comparison Between Cases A and B	187
		3.17.15	Discussion on the Main Results and Observational	
			Evidence	189
4	Cosn	nic Ray F	Planetary Surveys on Ships, Trains, Tracks, Planes,	
	Ballo	ons, and	Satellites	191
	4.1		itude Surveys by Japanese Expeditions during 1956–1962	
		to Antai	rctica on the Ship Soya	191
		4.1.1	The Routes and CR Apparatus in Japanese	
			and Some Previous Latitude Surveys	191
		4.1.2	Corrections of Japanese CR Latitude Survey Data	
			on the Barometric Effect and Worldwide	
	•		CR Variations	191
		4.1.3	Database of Japanese CR Latitude Surveys	194
•		4.1.4	Geomagnetic Latitude CR Curves for Neutron	
			and Muon Components	195
		4.1.5	CR Equator According to Measurements	
			in Japanese Expeditions	195
		4.1.6	Longitude Effect Along the CR Equator	196
•		4.1.7	The Position of Latitude Knee According to Japanese	
		•	Expeditions	197
		4.1.8	Planetary Distribution of CR Neutron Intensity	197
	4.2	Swedis	h-USA Latitude Surveys During 1956-1959	
			nection with the International Geophysical Year	198
		4.2.1	Latitude Surveys and the Problem of CR	
			Cutoff Rigidities	198
		4.2.2	CR Equator Along the Longitude 14°W	200
		4.2.3	Dependencies of CR Intensity from the Cutoff	
			Rigidity	201
	4.3	CR Lat	itude Surveys by Canadian Expeditions in 1965-1966	201
		4.3.1	Three Canadian CR Latitude Surveys, Routes,	
			and using Apparatus	201
		4.3.2	Main Results for the Expedition in Summer 1965	203
		4.3.3	CR Latitude Survey in Canada in November–December	
			1965	203
		4.3.4	CR Latitude Survey in Western USA and Hawaii	
•			in Summer 1966	204
		4.3.5	Calibrated and Extended Measurements of CR Intensity	
			on the Aircraft at Different Altitudes and at Different	
			Consecutive and address	200

	4.3.6	Geographically Smoothed Geomagnetic Cutoffs	
	,	Rigidities	207
	4.3.7	Final Analysis of Three Canadian CR Latitude	
		Survey Data	208
	4.3.8	CR Latitude Effects at Different Altitudes	210
	4.3.9	Comparison of Latitude Curves for Neutron Intensity	
		in Two Minima of Solar Activity in 1954/55	
		and 1965/66	211
4.4	NM St	rveys in the Southern Ocean to Antarctica	
	by USA	A, Australia, and South Africa	212
	4.4.1	Main Results of the Latitude Survey 1994/95;	
		Discovery of the Sea State CR Effect	212
	4.4.2	CR Spectra Deduced from Neutron Monitor Surveys	214
	4.4.3	Apparent Geomagnetic Cutoffs and the CR Anomaly	
		in the Cape Town Region	216
	4.4.4	Using He-3 Neutron Counters for Neutron-Component	
		Measurements; CR Latitude Survey in 1998/99	217
	4.4.5	Latitude Survey Observations of Neutron Multiplicities	220
	4.4.6	Continuing Each-Year NM Latitude Surveys: Main	
		Results from 1994–2001	223
4.5	Latitud	le Surveys of Environmental Radiation and Soft Secondary	
		mponents by Italian Expeditions to Antarctica	225
	4.5.1	Environmental Radiation and Soft Secondary CR	
-		Monitoring Along the Course of the Expeditions	
		from Italy to Antarctica and Back	225
	4.5.2	The Environmental Radiation and Soft Secondary CR	
		Detectors	227
	4.5.3	Measured Spectra of Environmental Radiation	228
	4.5.4	Latitude Dependencies of Environmental Radiation	
		in the 50-3,500 keV Energy Band	228
	4.5.5	Observations of Transition Sea-to-Land Effects	
		and "Radonic Storms" in the Environment Radiation	
		During Latitude Surveys	230
	4.5.6	Latitude Effects of the Soft Secondary CR Components	
	•	in the Energy Ranges 2.8-5.0 and 5-20 MeV	231
	4.5.7	The Main Results Obtained During Latitude Surveys	
		of Environment Radiation and Soft Secondary CR	
		Components	232
4.6	Daily 4	CR Latitude Curves Derived from the NM Worldwide	
	Netwo	rk Data	232
	4.6.1	The Main Idea of the Method Developed by Italian	
		Scientists	232
	4.6.2	The Daily Sea-Level CR Latitude Curves Obtained	
		from the NM Worldwide Network and CR Latitude	
		Surveys	233

	4.6.3	Using CR Latitude Survey Data for NM Calibration	234
	4.6.4	Using Daily Sea-Level CR Latitude Curves for Studying	
		Spectral Structure of Large Forbush Decreases	236
	4.6.5	Using Daily Sea-Level CR Latitude Curves for Studying	
		the Long-Term CR Spectral Variations	241
*	4.6.6	Comparison of CR Latitude Curves for Long-Term	
		and Forbush Decreases in CR Spectral Variations	244
	4.6.7	Using Daily Sea-Level CR Latitude Curves for Studying	
		the Influence of the Primary CR Modulation	
		on the Attenuation Coefficient of the Nucleonic	
		Component at Different Latitudes and Altitudes	247
	4.6.8	Using Daily CR Latitude Curves for Studying	
		the Influence of the Primary CR Modulation	
		on the Coupling Functions of the Nucleonic Component	
		at Sea Level and at Altitudes $\sim 1,900 m$ above	
		Sea Level	248
	4.6.9	Latitude and Altitude Dependencies of Primary	
		Modulation Effects in Neutron Multiplicity Distribution	
		in the NM-IQSY	250
4.7	CR Lati	tude Surveys over the Territory of the Former USSR	254
	4.7.1	CR Intensity Distribution over the Territory	
		of the Former USSR	254
	4.7.2	Latitude Curves of Neutron Intensity and Cutoff	
		Rigidities	255
	4.7.3	Coupling Functions for Neutron Component	
		at Sea Level	256
	4.7.4	Coupling Functions for the Neutron Component	
		at Mountain Level	257
	4.7.5	Calculation of the Integral Multiplicity for the Neutron	
1		Component	258
	4.7.6	The Measurements of Geomagnetic Effects by CR	
		Telescope; the Methods for Treating the Experimental	
		Data	258
	4.7.7	Cutoff Rigidities for CR Telescope: Vertical	
		and Inclined Directions	260
	4.7.8	Latitude Curves for the CR Telescope	261
	4.7.9	Amplitudes of Latitude Effects of Various Components	
		Measured by CR Telescope	262
	4.7.10	The East–West CR Asymmetry	262
	4.7.11	Coupling Functions and Integral Multiplicities	
		for Total Ionizing and Hard CR Components Derived	
		from Latitude Curves	264
	4.7.12	Latitude Surveys and Coupling Functions for Neutron	065
		N # 14 - N # 24 4 T 3	7/6

	4.7.13	The Airplane CR Latitude Surveys over the Former	
		USSR at Altitudes with Pressures of 260-400 mb	269
	4.7.14	The Balloon CR Latitude Surveys over the Former	
		USSR	270
	4.7.15	The Balloon Measurements over the Former USSR	
		of East-West CR Asymmetry: Estimation of the Upper	
		Limit for Antiproton/Proton Ratio	271
4.8	Soviet (CR Survey Expeditions over the World on the Ship	
		dsk	275
	4.8.1	CR Latitude Survey During December	
	•	1967–March 1968	275
	4.8.2	Determining the Coupling Functions	276
	4.8.3	Determining the CR Equator at 28°W	277
4.9	Soviet	CR Survey Expeditions over the World	
		/v Academician Kurchatov	278
	4.9.1	Regular CR Latitude Measurements on the r/v	
*	,.,,,	Academician Kurchatov	278
	4.9.2	Determining of Coupling Functions on the Basis	
		of Latitude Surveys	279
	4.9.3	The Normalizing of the Worldwide Network of CR	
		Stations on the Basis of CR Latitude Surveys by r/v	
		Academician Kurchatov	280
	4.9.4	Determining Integral Multiplicities	281
	4.9.5	Determining the Primary Spectrum of Long-Term	
		CR Variation	283
	4.9.6	Comparison of Coupling Functions Derived from CR	
		Latitude Services with Theoretical Expected	284
	4.9.7	Using CR Latitude Surveys by r/v Academician	
		Kurchatov for Checking the Cutoff Rigidities Models	284
	4.9.8	Estimation of Coupling Functions for Total Neutron	
		Component and Different Multiplicities	286
	4.9.9	Main Results of r/v Academician Kurchatov Expeditions	
		in 1971/72 and 1975: Checking Cutoff Rigidities	
		and Determining Coupling Functions	286
	4.9.10	Main Results of the r/v Academician Kurchatov	
		Expedition in 1982: Determining Coupling Functions	
		for Without-Lead NM and for NM-IQSY Total Intensity	
		and Different Multiplicities; Distribution Function	
		of Multiplicities Depending on Cutoff Rigidity	290
4.10	CR Lat	titude-Altitude Surveys and Secondary CR Dependencies	
		utoff Rigidity and Atmospheric Depth	296
	4.10.1	Latitudinal and Altitudinal Coupling Coefficients:	
		Nominations and Interconnections	296
	4.10.2	Latitude Dependence of Secondary CR Variations	298
		Altitude Dependencies of Secondary Variations	200

Contents xxiii

		4.10.4	Determination of the Spectrum of the Primary	
			CR Variations	299
	4.11		itude Knee of Secondary CR	301
		4.11.1	The Latitude Knee of Secondary CR and its Origin	301
		4.11.2	The Calculation Model of the Secondary CR	
			Knee Position	301
		4.11.3	The Latitude Knee of the Nucleonic Component	
			at Sea Level	302
		4.11.4	The Latitude Knee of the Muon Component	
			at Sea Level	304
		4.11.5	The Altitude Dependence of the Knee for Nucleonic	
	•		and Muon Components	304
	4.12	•	rison with Observations on the CR Latitude Knee	. 306
		4.12.1	Comparison for Neutron Component	306
		4.12.2	Comparison for Muon Component at Sea Level	306
		4.12.3	Comparison with Experimental Data on the CR Muon	
			Latitude Knee at an Atmospheric Depth of 310 g/cm ²	308
	4.13		African Latitude Surveys at Different Altitudes	
		by Airp	lanes	311
		4.13.1	South African Expeditions, Response Functions	
			and 22-Year Modulation	311
		4.13.2	Latitude Distributions of CR Components at Sea	
			Level and at Airplane Altitudes in the South African	
			Magnetic Anomaly	314
		4.13.3	Cutoff Rigidities and Latitude Dependence of Muons	
		•	at 307 g/cm ² in Inclined Directions	318
	4.14	Latitud	e CR Surveys on Balloons	322
		4.14.1	Survey of CR Intensity in 86° N to 73° S Geomagnetic	
			Latitude on Balloons	322
		4.14.2	Latitude Surveys by Balloon Measurements of CR	
			Vertical Intensity and East-West Asymmetry;	•
			Determining Energy Spectrum and Charge Sign	
			of Primary CR	329
5			of Cosmic Ray Survey to Antarctica on the Ship	
			6/97	341
	5.1		otion of Apparatus, Trajectory Calculations of Cutoff	
		Rigiditi	ies in the Real Geomagnetic Field Along the Ship's	
			·	341
		5.1.1	Importance of Obtaining Exact Data in CR	
			Latitude Surveys	341
		5.1.2	Principles of the Data Corrections Method	342
		5.1.3	Description of the Experiment	343
		5.1.4	The Recorded Data and Acquisition System	343

	5.1.5	Quality Assurance Procedures: Presurvey	1
		and Postsurvey Measurements	344
	5.1.6	The Latitude Survey: Route and Main Results	346
	5.1.7	The Quality Assurance Procedures and Internal Tests	348
5.2	Correct	tion for Primary CR Variations and Summary	
		Corrections	349
	5.2.1	Primary Isotropic Time Variations	349
	5.2.2	Corrections for Primary North-South Asymmetry of CR	
		Distribution in the Interplanetary Space	350
	5.2.3	The Summing of all Corrections Including	
		Meteorological Effects	352
•	5.2.4	Quality Assurance Procedure: Internal Comparison	
		of Corrected Data	352
	5.2.5	Critical Consideration of Results in Sections 5.1	-
•	5.2.5	and 5.2.1– 5.2.4	354
5.3	Compu	station of Cutoff Rigidities of Vertically Incident CR	55 1
5.5		es for Latitude Survey	355
5.4		dencies of Corrected CR Intensities upon Cutoff Rigidity.	357
5.5		d-Backward Effect: CR East-West Asymmetry	337
5.5		symmetric Distribution of Neutron Absorption	
		eneration Around the Monitor	359
	5.5.1	Forward—Backward Effect During CR Latitude Survey:	337
	3.3.1	Asymmetry in Cutoff Rigidities	359
	5.5.2	Contribution of Nonvertical Incidence Particles	227
	3.3.2	to the 3NM-IQSY Counting Rate	360
	5.5.3	Forward–Backward Effect During CR Latitude Survey:	300
	3.3.3	Expected Asymmetry in Neutron Intensities	362
5.6	CD I		302
3.0		ensity Versus Cutoff Rigidity, Analytical Approximation, oupling Functions for the 3NM-IQSY and 2BC	
		• =	261
		ors	364
	5.6.1	Analytical Description of the Dependence	
		of the 3NM-IQSY and 2BC Intensities on the Vertical	26
		Cutoff Rigidity	364
	5.6.2	Analytical Description of Coupling Functions	
		for the 3NM-IQSY and 2BC Detectors	365
5.7		ve Cutoff Rigidities for Different Zenith and Azimuth	
		s of CR Arriving at Points Along the Ship Route	365
	5.7.1	Calculation of Effective Cutoff Rigidities for Different	
		Zenith and Azimuth Angles of CR Arriving at Points	•
		Along the Ship Route from Italy to Antarctica	366
	5.7.2	Effective Cutoff Rigidities for Different Zenith	
		and Azimuth Angles for the Ship Route from Antarctica	
		to Italy	369

Contents xxv

	5.8	Appare	ent Cutoff Rigidities Along the Ship's Route and Related	-
		Couplin	ng Functions for the 3NM-IQSY and 2BC Detectors	371
		5.8.1	Calculation of Apparent Cutoff Rigidities R _{cp} ^{qp} along	
			the Ship's Route: Dipole Approximation for Inclined	
		,	Directions	371
•		5.8.2	Calculation of Apparent Cutoff Rigidities in the Real	
			Geomagnetic Field for the Ship Route Italy-Antarctica	
			Taking into Account Results of Trajectory Calculations	
			for Inclined Directions	373
		5.8.3	Calculation of Apparent Cutoff Rigidities in the Real	
			Geomagnetic Field for the Ship Route Antarctica-Italy	
			Taking into Account Results of Trajectory Calculations	
•			for Inclined Directions	375
		5.8.4	Comparison of Latitude Dependencies and Coupling	
			Functions for Effective R_{cp} and Apparent R_{cp}^{ap} Cutoff	
			Rigidities	376
	5.9	Summa	ary of Results of the CR Latitude Survey on the Ship	5,0
	2.7		in 1996/97, and Discussion on Coupling Functions	377
		5.9.1	Main Results Obtained in CR Latitude Survey	27.
		5.7.1	in 1996/97 on Board the Ship Italica	377
		5.9.2	Comparison and Discussion on Coupling Functions	37.8
		3.7.2	Companion and Discussion on Coupling Lanctions	57,0
6	Geor		· Variations of Cosmic Rays	381
	6.1	Two M	Tain Sources of CR Geomagnetic Variations	381
6.2 CR Variations Expected for Large Long-Term Changes				
		of the	Geomagnetic Field	382
		6.2.1	Expected CR Variations Caused by Changing	
		*.	of the Earth's Dipole Magnetic Moment	382
		6.2.2	Variations of Geomagnetic Origin During the Last	
			2,000 Years	384
		6.2.3	Secular Variations of the Cutoff Rigidities	385
	6.3	Traject	tory Calculations of Long-Term Variation of Planetary	
		Distrib	oution of Cutoff Rigidities	386
		6.3.1	Results for 1600-2000 by Steps of 50 Years	386
	•	6.3.2	An Example of Cutoff Variability on CR Station LARC	
			During 1955-1995 in Connection with Geomagnetic	
			"Jerks"	387
		6.3.3	Long-Term Variations of the Planetary Distribution	
			of Geomagnetic Rigidity Cutoffs During the Last 2,000	
			Years	395
		6.3.4	On the Variation of the Earth's Magnetic Dipole	
			Moment During 1600–2005	401
		6.3.5	Long-Term Variation of the Planetary Distribution	
			of the Geomagnetic Rigidity Cutoffs Between	
			1060 and 2000	401

xxvi

6.4		erm Change of Cutoff Rigidities and the Expected Change		
	of CR I	ntensity Owed to Geomagnetic Field Variation	404	
6.5	The Glo	obal Cutoff Rigidities and their Change During the Last		
	2,000 Years			
6.6		of Axially Symmetric Currents in the Magnetosphere:		
	The Pro	visional Assessment of the Causes of Variations in Cutoff		
	Rigiditi	es During Magnetic Storms	406	
	6.6.1	Development of Models of the Axially Symmetric		
		Current's Influence on CR Cutoff Rigidities	406	
	6.6.2	The CR Vertical Cutoff Rigidities in the Presence		
		of a Thin Equatorial Ring Current	409	
	6.6.3	The CR Cutoff Rigidities for Obliquely Incident		
		Particles in the Presence of a Thin Equatorial		
		Ring Current	410	
6.7		ce of Current Sheets Surfaces on the CR Geomagnetic		
		Rigidities	416	
•	6.7.1	Current Sheet in the Form of a Spherical Surface	416	
	6.7.2	Current Sheet Formed by Rotating the Line of Force		
•		of the Magnetic Dipole	417	
6.8		fect of Volume Currents in the Radiation Belts (Akasofu		
		apman Model) on the CR Cutoff Rigidity	422	
6.9		luence of Ring Currents on the Position of CR Impact		
		and Asymptotic Directions	423	
6.10		of Compression of the Magnetosphere (Current System		
		ern Direction) on CR Cutoff Rigidities	424	
6.11		of Compression of the Magnetosphere and Western Current		
	-	s on CR Asymptotic Directions and the Acceptance		
	-		426	
6.12		netric Variations of the Magnetosphere and Diurnal CR	400	
		ons of Geomagnetic Origin	427	
6.13		tion of the Asymptotic Acceptance Cones	427	
6.14		rst Observations of CR Variations Due to Changes	422	
		Geomagnetic Field	432	
	6.14.1	Unusual Increases During Magnetic Storms	432	
	6.14.2	Application of the Method of Coupling Functions	436	
	6.14.3	The Latitude–Longitude Distribution of the CR Increase	420	
	6144	Effect of September 13, 1957	439	
	6.14.4	The Latitude-Longitude Distribution of the CR Increase	441	
	C 145	Effect on February 11, 1958	441	
	0.14.3	Main Properties of the CR Intensity Increase During	444	
	£ 11 £	the Main Phase of a Magnetic Storm	444	
	6.14.6	Statistical Properties of the CR Increase Effect During the Main Phase of the Geomagnetic Storm	445	
	6.14.7	Possible Influence of Small Magnetic Perturbations	443	
	0.14./	on Cosmic Rays	447	
		on Cosmic Rays	44/	

	6.14.8	Earlier Detection of the Effect of Compression	
	t	of the Magnetosphere in Cosmic Rays	448
	6.14.9	Earlier Direct Observations of the Cutoff Variations	
		by Means of Measurements on Balloons and Satellites	
		and from Polar Cap Absorptions	448
6.15	Variatio	ons of the Geomagnetic Field and Local CR Anisotropy	449
	6.15.1	The Asymmetry in the Variation of the CR Cutoff	
		Rigidity for East-West Directions in Ahmedabad	
		and North-South Directions in Moscow	449
	6.15.2	The Analysis of CR Cutoff Rigidity Asymmetry	
		on the Basis of Directional Data in Capetown and	
		Yakutsk, and NM Worldwide Network	451
	6.15.3	The Main Results and Discussion on CR Cutoff Rigidity	
		Asymmetry During Magnetic Storms	455
	6.15.4	The Anomalous CR Diurnal Variation During the Main	
		Phase of the Magnetic Storm of February 11, 1958	455
	6.15.5	On the Nature of CR Anisotropy Asymmetry:	
		Local and Non-local Sources	456
6.16	CŘ Lui	nar-Daily Variation and Tidal Effects in the Earth's	
		osphere	458
	6.16.1	The Discovery of Lunar-Daily CR Variation	
		and Discussion on Its Possible Origin	458
	6.16.2	Amplitude Modulation of CR Solar-Daily Wave	
		by the 27-Day Effect and Formation of Spurious CR	
		Lunar-Daily Variation	459
	6.16.3	Formation of Spurious CR Lunar-Daily Variation	
		by the Phase Modulation of CR Solar-Daily Wave	
		with a Period of 27 Days	460
	6.16.4	Checking on the Properties of 27-Day Modulation	
		of CR Solar-Daily Variation	460
	6.16.5	On the Possible Reality of the CR Lunar-Daily Variation	461
	6.16.6	The Dependence of the CR Lunar-Daily Variation	
		on the Relative Positions of the Sun, Moon, and Earth	. 462
	6.16.7	Dependence of the CR Lunar-Daily Variation on Cutoff	
		Rigidity	463
	6.16.8	Main Conclusions and Discussion on the CR	
		Lunar-Daily Variation in Connection with Possible Tidal	
•		Effects in the Earth's Atmosphere and Magnetosphere	464
6.17	The Inf	luence of the Tail of the Earth's Magnetosphere on the CR	
	Cutoff	Rigidities	467
	6.17.1	Main Properties of the Tail of the Magnetosphere	467
	6.17.2	Probable Mechanism by Which the Earth's Magnetic	
		Tail Influences the CR Cutoff Rigidities	468
	6.17.3	Approximate Position of the Curves of Constant	
		Threshold at High Latitudes	468

•	6.17.4	The Influence of the Earth's Magnetic Tail	
		on the Trajectories of Protons with Energy 1.2 MeV	469
	6.17.5	Channeling of Low-Energy Cosmic Rays in the Tail	
		of the Earth's Magnetosphere	470
6.18	Discrin	ninating CR Magnetospheric Variations from Observed	
	CR Dat	a by the Spectrographical Method	473
	6.18.1	The Matter of Problem	473
	6.18.2	Determining Cutoff Rigidity Change	
		by the Spectrographic Method on the Basis	
		of Single CR Observatory Data	476
	6.18.3	Determining the Cutoff Rigidity Changes	
		by the Spectrographic Method on the Basis of Data from	
		Two CR Observatories (Case One and Three	
		Components)	477
•	6.18.4	Determining the Cutoff Rigidity Changes in the Case	
		of Two Components in the Each of the Two CR	
		Observatories	478
	6.18.5	Determining Planetary Cutoff Rigidity Changes	
		Distribution on the Basis of Many CR Observatories'	
		Data by the Spectrographic Method	479
	6.18.6	An Example of Using the Spectrographic Method	
		for Determining CR Geomagnetic Variations;	
		Application to Ring Current (Events in May and June	
		1972)	482
6.19		Rigidity Variations of European Mid-latitude Stations	
	_	the September 1974 Forbush Decrease	485
	6.19.1	The Matter of Problem	485
	6.19.2	Used Data and Main Characteristics of the Event	485
	6.19.3	Results of Data Analysis	486
	6.19.4	Main Results and Discussion	488
6.20		extraterrestrial and Geomagnetic Variations in CR During	400
		bush Decreases of March 26, 1976	489
	6.20.1	Observation Data	489
	6.20.2		489
	6.20.3	Variations of ΔR_c on Different CR Stations	401
		and Dependence of ΔR_c on R_{co}	491
C 0.1	6.20.4	Estimation of Ring Current's Properties	492
6.21		tes of the Parameters of the Magnetospheric Ring Current	403
	_	Magnetic Storms on the Basis of CR Data	493
	6.21.1	The Matter of Problem and Observational Data Analysis of Data in the Frame of Two Used Models	493
	6.21.2		493
	6012	of Ring Current	49.
6 22	6.21.3	lation Between Variations of the CR Cutoff Rigidity	490
6.22		lation Between variations of the CR Cutoff Rigidity ϵ Geomagnetic $D_{\rm st}$ -Variation During Magnetic Storms	497
	and the	z definaging the D_{st} - variation during iverginetic δ torms	497

Contents		xxix

		6.22.1	The Matter of Problem	497
		6.22.2	Observational Data and Variations of R _c During	
			Three Events	498
		6.22.3	Discussion and Main Results	499
,	6.23		Decreases at High Latitudes and Increases at Middle	
		Latitude		500
		6.23.1	The Cases When During Magnetic Storms at High	
	•		Latitudes Observed CR Decreases but at Middle	* .
			Latitudes CR Increases	500
		6.23.2	Main Equations for the Extended	*
			Spectrographic Method	501
		6.23.3	CR and Magnetic Parameters for Eight Selected	
			Magnetic Storms	502
		6.23.4	Estimation of the Current Ring Radius	502
	6.24	Using tl	he Simplest Version of the Global Spectrographic Method	
		(BDY-N	Method) for Discriminating CR Magnetospheric Variations	505
		6.24.1	The Matter of Problem and the Simplest Version	
		,	of the Global Spectrographic Method	505
		6.24.2	Magnetospheric Effects on CR During Forbush	
			Decreases in August 1972	506
		6.24.3	The Longitude and Latitude Dependences	
			of the Geomagnetic Cutoff Rigidity Variations During	
			Strong Magnetic Storms in May 25-26, 1967, December	
			17–18, 1971, and in August 4–5, 1972	509
		6.24.4	Changes of CR Cutoff Rigidities During Great Magnetic	
			Storms in May 1967, August 1972, and November 1991	514
	•	6.24.5	On the Correction of CR Data on Geomagnetic	
			Variations	518
	6.25		tospheric Currents and Variations of Cutoff Rigidities	
			ober 20, 1989	518
		6.25.1	The Matter of Problem	518
	•	6.25.2	Procedure of CR Cutoff Rigidity Calculations	519
		6.25.3	Applying to NM Data of Moscow, Kiev, and Rome	520
		6.25.4	Estimation of Magnetospheric Currents	520
		6.25.5	Recalculations of Cutoff Rigidity Changes	522
		6.25.6	Checking Using Balloon and Satellite Measurements	524
		6.25.7	Summary and Discussion	524
,	Magı		ric Models and their Checking by Cosmic Rays	525
	7.1		rth's Magnetic Field with a Warped Tail Current Sheet	
			nenko-89 Model)	525
		7.1.1	The Matter of Problem	525
		7.1.2	Axisymmetric Current Sheet Model	
			and its Modification	527

	7.1.3	Application to the Earth's Magnetosphere: The Ring	
		Current and the Tail Current Systems	530
	7.1.4	Contribution from the Magnetospheric Boundary	<i>E</i> 22
		Sources	533
	7.1.5	Analysis of the Model's Parameters Depending on K_p .	534
	7.1.6	Model of Magnetic Field Distribution and Field-Line	c 2 c
	-	Configurations	537
	7.1.7	Local Time-Dependence of the Average Inclination	540
	- 40	Angles	540
	7.1.8	Distribution of Electric Current Density	540
	7.1.9	The Model Field-Line Configurations for Several K_p	
		Intervals	542
	7.1.10	Summary of Main Results and Model Developing	545
7.2		cospheric Configurations from a High-Resolution	
		ased Magnetic Field Model	546
	7.2.1	The Matter of Problem	546
	7.2.2	Modeling Equatorial Current System: Main Approach	547
	7.2.3	Derivation of Vector Potentials	549
	7.2.4	Magnetic Field Components	552
	7.2.5	Spatial Variation of the Current Sheet Thickness	554
	7.2.6	Approximations for the Shielding Field	554
•	7.2.7	Contribution from Field-Aligned Currents	555
	7.2.8	Data Used for Magnetosphere Modeling	558
	7.2.9	Regularization of Matrix Inversion Procedures	560
	7.2.10	Data Weighting	561
	7.2.11	Binning by K_p Index	563
	7.2.12	Binning by the IMF B_z	564
	7.2.13	Main and Recovery Storm Phases	565
	7.2.14	Field-Aligned and Equatorial Currents	566
	7.2.15	"Penetrating" Field Effect	568
	7.2.16	Effects of the Dipole Tilt and IMF B_y on the Model Tail	
		Current	569
	7.2.17	Summary of Main Results	570
7.3		Time Configuration of the Inner Magnetosphere:	
		Fedder-Mobarry MHD Code, Tsyganenko Model,	
		DES Observations	571
7.4		tospheric Transmissivity of CR Accounting Variability	
		Geomagnetic Field with Changing K_p and with Local Time	
		n the Frame of the Tsyganenko-89 Model)	576
	7.4.1	The Matter of Problem	576
	7.4.2	The Calculation Method	57
	7.4.3	Calculations of Transmissivity Functions	
	7.4.4	Asymptotic Directions for a High-Latitude Station	579
	7.4.5	The Transmission Function at Middle Latitudes: Varying	
		with IOPT	584

Contents xxxi

	7.4.6 7.4.7	The Weighted Transmissivity Function	584
	7.4.7	The Changing of the Transmissivity Function During Very Strong Geomagnetic Disturbance	584
	710	Asymptotic Directions for a Middle-Latitude Station	587
	7.4.8 7.4.9	Asymptotic Directions and Transmissivity Function	
		for Low-Altitude Satellite Observations	589
	7.4.10	Main Results and Discussion	590
7.5		gnetic Cutoff Variations Observed by Tibet NM During	
		ximum of Solar Activity: Checking Within the Frame	501
		Syganenko-89 Model	591
	7.5.1	Tibet NM and Observation Data for Magnetic Storm	501
	7.50	Events	591
	7.5.2	Analysis of Data and Comparison	502
_ ,		with the Tsyganenko-89 Model	593
7.6		tospheric Effects in CR During the Magnetic Storm	504
		ember 2003	594
	7.6.1	The Matter of Problem	594
	7.6.2	Solar and Interplanetary Activity in November 2003	597
	7.6.3	Data and Method of Analysis	597
	7.6.4	Uncorrected and Corrected for the Magnetospheric	500
		Effect CR Variations	599
	7.6.5	Cutoff Rigidity Variations During the Magnetic Storm .	600
	7.6.6	Correlation of the Obtained ΔR_{ci} with D_{st} Index	600
	7.6.7	Latitudinal Dependences of Cutoff Rigidity	600
	- 40	Variations	603
	7.6.8	Comparison of Cutoff Rigidity Variations Determined	,
		by CR Data and Derived from Magnetosphere Models	
		by Trajectory Calculations	604
	7.6.9	On the Consistency of the "Storm" Models	
		with the Current Distribution Derived from Spacecraft	60.5
	5 (10	Data	605
	7.6.10	On the Specific Feature of the November 2003 Event	607
	- (and on the Radius of the Ring Current	607
	7.6.11	On Possible Errors in Obtained Results	607
	7.6.12	On the Sensitivity of NM to CR Magnetospheric Variation	608
	7.6.13	Summary of Main Results	609
7.7	On Ch	ecking the Magnetosphere Models by Galactic CRs:	
		eat Magnetic Storm in November 2003	609
	7.7.1	The Matter of Problem	609
	7.7.2	Comparison ΔR_{sgs} Derived from CR Data and ΔR_{ef}	
		Obtained by Trajectory Tracing Within in the Frame	
		of the Ts03 Tsyganenko Model	611
	7.7.3	Comparison of Absolute and Relative Maximum	
		Decreases of CR Cutoff Rigidities	613

xxxii Contents

		7.7.4	The Behavior of the Difference $\delta R_c = \Delta R_{sgs} - \Delta R_{ef} \dots$	613
		7.7.5	On the Correlations of $\Delta R_{\rm sgs}$ and $\Delta R_{\rm ef}$ with Parameters	
			$D_{\rm st}$, $B_{\rm Z}$, $B_{\rm Y}$, $N_{\rm SW}$, and $V_{\rm SW}$	613
		7.7.6	On the Relations Between ΔR_{sgs} and ΔR_{ef} for Different	
			CR Stations	615
		7.7.7	Main Results and Conclusion	617
	7.8	Checki	ng of Magnetosphere Models by Solar CRs: GLE	
		on Jani	uary 20, 2005	617
		7.8.1	The Matter of Problem	617
		7.8.2	CR Data of NM on Mt. Jungfraujoch in Comparison	
			with Other NM Data	617
		7.8.3	Determining CR Cutoff Rigidity Variations During GLE	
			within the Frame of Tsyganenko Models of Disturbed	
			Magnetosphere; Correction of CR Data on Geomagnetic	,
			Variations	619
		7.8.4	Determining Solar CR Angle Distribution and Energy	
			Spectrum Time Variations, and Checking	
	•		Self-Consistent CR Data with Tsyganenko's	
			- Magnetosphere Model	620
3	Cala	atia Con	mis Davis in Atmosphanes and Magnetechanes	
5			mic Rays in Atmospheres and Magnetospheres	623
	8.1		atter of Problem	623
	8.2		roperties of the Planetary Atmospheres	623
	8.3		R Secondary Components, the Integral Generation	023
	0.3			
		-	blicities, and the Coupling Functions in the Martian	626
	8.4		phere; Expected Latitude Magnetic Effect	020
	8.4		R Secondary Components, the Integral Generation	
			plicities, and the Coupling Functions in the Atmospheres	629
		or Jup	iter and Venus; Expected Latitude Magnetic Effect	029
Co	nclusi	on and l	Problems	633
D۵	foronc	06	· · · · · · · · · · · · · · · · · · ·	637
	.ici ciic	cs	· · · · · · · · · · · · · · · · · · ·	037
ΑĮ	pendi	x		683
Su	bject I	ndex		753
۸.	ithor I	ndon		765

Frequently used Abbreviations and Notations

ACE Advanced Composition Explorer satellite a_n^m, b_n^m Gauss coefficients for planetary magnetic field

CME coronal mass ejection

CR cosmic ray

Dst disturbance storm time index E energy of CR particles E_0 energy of primary CR particle

ESO Israel–Italian Emilio Segre' Observatory

FAC field-aligned currents
FEP Flare Energetic Particles

GLE ground level event of solar CR increasing

H altitude

h atmospheric pressure

hopressure on the level of observationsICionization chamber, shielded by 10 cm PbICMEinterplanetary coronal mass ejectionsICRCIsrael Cosmic Ray Center (1992–2002)

ICR&SWC Israel Cosmic Ray & Space Weather Center (from

2003)

ICRS International Cosmic Ray Service (proposed in

1991)

IEF interplanetary electric field

IGY International Geophysical Year (July 1957-

December 1958)

IMF interplanetary magnetic field

IQSY International Quiet Sun Year (1964–1965)

L McIlwain parameter.
MC magnetic cloud

m w.e. meters of water equivalent M_E magnetic moment of the earth