

Prashant Saxena
Rupesh S. Shelar
Sachin S. Sapatnekar

Routing Congestion in VLSI Circuits

Estimation and Optimization

Springer

Contents

Part I THE ORIGINS OF CONGESTION

1	AN INTRODUCTION TO ROUTING CONGESTION	3
1.1	The Nature of Congestion	4
1.1.1	Basic Routing Model	4
1.1.2	Routing Congestion Terminology	9
1.2	The Undesirability of Congestion	12
1.2.1	Impact on Circuit Performance.....	12
1.2.2	Impact on Design Convergence	14
1.2.3	Impact on Yield	17
1.3	The Scaling of Congestion	20
1.3.1	Effect of Design Complexity Scaling	20
1.3.2	Effect of Process Scaling	22
1.4	The Estimation of Congestion	26
1.5	The Optimization of Congestion	27
1.6	Final Remarks	28
	References	29

Part II THE ESTIMATION OF CONGESTION

2	PLACEMENT-LEVEL METRICS FOR ROUTING CONGESTION	33
2.1	Fast Metrics For Routing Congestion	34
2.1.1	Total Wirelength	35
2.1.2	Pin Density	37
2.1.3	Perimeter Degree	38
2.1.4	Application of Rent's Rule to Congestion Metrics	38
2.2	Probabilistic Estimation Methods	41
2.2.1	Intra-bin Nets	43
2.2.2	Flat Nets.....	43

2.2.3	Single and Double Bend Routes for Inter-bin Nets	45
2.2.4	Multibend Routes for Inter-bin Nets	48
2.2.5	Routing Blockage Models	50
2.2.6	Complexity of Probabilistic Methods	52
2.2.7	Approximations Inherent in Probabilistic Methods	54
2.3	Estimation based on Fast Global Routing	56
2.3.1	Search Space Reduction	57
2.3.2	Fast Search Algorithms	58
2.4	Comparison of Fast Global Routing with Probabilistic Methods	63
2.5	Final Remarks	64
	References	65
3	SYNTHESIS-LEVEL METRICS FOR ROUTING CONGESTION	67
3.1	Motivation	68
3.2	Congestion Metrics for Technology Mapping	70
3.2.1	Total Netlength	72
3.2.2	Mutual Contraction	73
3.2.3	Predictive Congestion Maps	75
3.2.4	Constructive Congestion Maps	79
3.2.5	Comparison of Congestion Metrics for Technology Mapping	81
3.3	Routing Congestion Metrics for Logic Synthesis	83
3.3.1	Literal Count	85
3.3.2	Adhesion	85
3.3.3	Fanout and Net Range	87
3.3.4	Neighborhood Population	88
3.3.5	Other Structural Metrics for Netlength Prediction	89
3.3.6	Comparison of Congestion Metrics for Logic Synthesis .	91
3.4	Final Remarks	91
	References	92

Part III THE OPTIMIZATION OF CONGESTION

4	CONGESTION OPTIMIZATION DURING INTERCONNECT SYNTHESIS AND ROUTING	97
4.1	Congestion Management during Global Routing	98
4.1.1	Sequential Global Routing	100
4.1.2	Rip-up and Reroute	101
4.1.3	Hierarchical and Multilevel Routing	105
4.1.4	Multicommodity Flow based Routing	108
4.1.5	Routing using Simulated Annealing	110
4.1.6	Routing using Iterative Deletion	111
4.2	Congestion Management during Detailed Routing	112

4.3	Congestion-aware Buffering	115
4.3.1	Routability-aware Buffer Block Planning	116
4.3.2	Holistic Buffered Tree Synthesis within a Physical Layout Environment	122
4.4	Congestion Implications of Power Grid Design	130
4.4.1	Integrated Power Network and Signal Shield Design	130
4.4.2	Signal and Power Network Codesign	132
4.5	Congestion-aware Interconnect Noise Management	136
4.5.1	Congestion-aware Shield Synthesis for RLC Noise	137
4.5.2	Integrated Congestion-aware Shielding and Buffering	138
4.6	Final Remarks	139
	References	140
5	CONGESTION OPTIMIZATION DURING PLACEMENT	145
5.1	A Placement Primer	147
5.1.1	Analytical Placement	148
5.1.2	Top-down Partitioning-based Placement	150
5.1.3	Multilevel Placement Methods	151
5.1.4	Move-based Methods	152
5.2	Congestion-aware Post-processing of Placement	152
5.2.1	Find-and-fix Techniques	153
5.2.2	Congestion-aware Placement Refinement	157
5.2.3	White Space Management Techniques	162
5.3	Interleaved Congestion Management and Placement	168
5.3.1	Interleaved Placement and Global Routing	169
5.3.2	Interleaved Update of Control Parameters in Congestion-aware Placement	174
5.4	Explicit Congestion Management within Placement	174
5.4.1	Cell Inflation	175
5.4.2	White Space Management Techniques	180
5.4.3	Congestion-aware Objective Function or Concurrent Constraints	182
5.5	Final Remarks	185
	References	186
6	CONGESTION OPTIMIZATION DURING TECHNOLOGY MAPPING AND LOGIC SYNTHESIS	189
6.1	Overview of Classical Technology Mapping	190
6.1.1	Mapping for Area	191
6.1.2	Mapping for Delay	192
6.1.3	Tree and DAG Mapping	195
6.2	Congestion-aware Technology Mapping	197
6.2.1	Technology Mapping using Netlength	199
6.2.2	Technology Mapping using Mutual Contraction	203
6.2.3	Technology Mapping using Predictive Congestion Maps	205

6.2.4	Technology Mapping using Constructive Congestion Maps	208
6.2.5	Comparison Of Congestion-aware Technology Mapping Techniques	213
6.3	Overview of Classical Logic Synthesis	214
6.3.1	Technology Decomposition	215
6.3.2	Multilevel Logic Synthesis Operations	216
6.4	Congestion-aware Logic Synthesis	219
6.4.1	Technology Decomposition Targeting Netlength and Mutual Contraction	219
6.4.2	Multilevel Synthesis Operations Targeting Congestion	221
6.4.3	Comparison of Congestion-aware Logic Synthesis Techniques	225
6.5	Final Remarks	226
	References	227
7	CONGESTION IMPLICATIONS OF HIGH LEVEL DESIGN	231
7.1	An Illustrative Example: Coarse-grained Parallelism	231
7.2	Local Implementation Choices	234
7.3	Final Remarks	235
	Index	237