Joe Rosen

SYMMETRY RULES

How Science and Nature Are Founded on Symmetry

With 86 Figures and 4 Tables

Contents

1	The	Concept of Symmetry	1
	1.1	The Essence of Symmetry	1
	1.2	Symmetry Implies Asymmetry	8
	1.3	Analogy and Classification Are Symmetry	10
	1.4	Summary	15
2	Scie	nce Is Founded on Symmetry	17
	2.1	Science	17
	2.2	Reduction Is Symmetry	20
		2.2.1 Reduction to Observer and Observed	22
		2.2.2 Reduction to Quasi-Isolated System and Environment	25
		2.2.3 Reduction to Initial State and Evolution	26
	2.3	Reproducibility Is Symmetry	29
	2.4	Predictability Is Symmetry	32
	2.5	Analogy in Science	35
	2.6	Symmetry at the Foundation of Science	37
	2.7	Summary	38
3	Sym	metry in Physics	39
	3.1	Symmetry of Evolution	40
	3.2	Symmetry of States	-1-1
	3.3	Reference Frame	49
	3.4	Global, Inertial, and Local Reference Frames	53

XII	Contents

	3.5	Gauge Transformation	55
	3.6	Gauge Symmetry	58
	3.7	Symmetry and Conservation	65
		3.7.1 Conservation of Energy	66
		3.7.2 Conservation of Linear Momentum	67
		3.7.3 Conservation of Angular Momentum	68
	3.8	Symmetry at the Foundation of Physics	70
	3.9	Symmetry at the Foundation of Quantum Theory	71
		3.9.1 Association of a Hilbert Space with a Physical System	71
		3.9.2 Correspondence of Observables to Hermitian Operators	73
		3.9.3 Complete Set of Compatible Observables	74
		3.9.4 Heisenberg Commutation Relations	7 5
		3.9.5 Operators for Canonical Variables	75
		3.9.6 A Measurement Result Is an Eigenvalue	75
		3.9.7 Expectation Values and Probabilities	76
		3.9.8 The Hamiltonian Operator	76
		3.9.9 Planck's Constant as a Parameter	77
		3.9.10 The Correspondence Principle	77
	3.10	Summary	77
4	The	Symmetry Principle	81
	4.1	Causal Relation	81
	4.2	Equivalence Relation, Equivalence Class	86
	4.3	The Equivalence Principle	89
	4.4	The Symmetry Principle	97
	4.5	Cause and Effect in Quantum Systems	102
	4.6	Summary	104
5	App	lication of Symmetry	107
	5.1	Minimalistic Use of the Symmetry Principle	107
	5.2	Maximalistic Use of the Symmetry Principle	125
	5.3	Summary	130

		Contanto	VIII
		Contents	XIII
6		proximate Symmetry,	
		entaneous Symmetry Breaking	
	6.1	Approximate Symmetry	
	6.2	Spontaneous Symmetry Breaking	
	6.3	Summary	140
7	Cos	mic Considerations	141
	7.1	Symmetry of the Laws of Nature	141
	7.2	Symmetry of the Universe	144
	7.3	No Cosmic Symmetry Breaking or Restoration	147
	7.4	The Quantum Era and The Beginning	155
	7.5	Summary	159
8	The	Mathematics of Symmetry: Group Theory	161
	8.1	Group	161
	8.2	Mapping	176
	8.3	Isomorphism	180
	8.4	Homomorphism	186
	8.5	Subgroup	192
	8.6	Summary	194
9	Gro	up Theory Continued	195
	9.1	Conjugacy, Invariant Subgroup, Kernel	195
	9.2	Coset Decomposition	203
	9.3	Factor Group	
	9.4	Anatomy of Homomorphism	
	9.5	Generator	215
	9.6	Direct Product	217
	9.7	Permutation, Symmetric Group	
	9.8	Cayley's Theorem	
	9.9	Summary	
	0.0	Dulling,,	_

10 The Formalism of Symmetry 227

10.1

10.2

XIV Contents

	10.3	Transformations in Space, Time, and Space-Time \ldots .	236
	10.4	State Equivalence	240
	10.5	Symmetry Transformation, Symmetry Group	243
	10.6	Approximate Symmetry Transformation	251
	10.7	Quantification of Symmetry	253
	10.8	Quantum Systems	255
	10.9	Summary	258
11	Sym	metry in Processes	261
	11.1	Symmetry of the Laws of Nature	261
	11.2	Symmetry of Initial and Final States,	
		the General Symmetry Evolution Principle	270
	11.3	The Special Symmetry Evolution Principle	074
		and Entropy	
	11.4	Summary	280
12	Sum	mary of Principles	283
	12.1	Symmetry and Asymmetry	283
	12.2	Symmetry Implies Asymmetry	283
	12.3	No Exact Symmetry of the Universe	284
	12.4	${\bf Cosmological\ Implications}$	285
	12.5	The Equivalence Principle	285
	12.6	The Symmetry Principle	285
	12.7	The Equivalence Principle for Processes	286
	12.8	The Symmetry Principle for Processes	286
	12.9	The General Symmetry Evolution Principle $\ldots\ldots\ldots$	286
	12.10	The Special Symmetry Evolution Principle	286
Re	ferenc	es	289
Fu	$_{ m ther}$	Reading	293
Inc	lex		297