Adaptive Spatial Filters for Electromagnetic Brain Imaging

Contents

1	Introduction				
	1.1	Functional brain mapping	1		
	1.2	Electromagnetic brain imaging	2		
	1.3	Spatial filters	3		
	1.4	Book chapter organization	5		
	1.5	Acknowledgements	7		
2	Sen	sor array outputs and spatial filters	9		
	2.1	Neuromagnetic signals as sensor-array outputs	9		
		2.1.1 Definitions	9		
			10		
		2.1.3 Linear independence of lead-field vectors	11		
	2.2		13		
	2.3		15		
		2.3.1 Data and source covariance relationship	15		
		2.3.2 Formulation for uncorrelated sources	١7		
,	2.4		18		
			18		
			١9		
	2.5	- *			
			22		
		~ ·	23		
		<u>.</u>	25		
3	Ton	nographic reconstruction and nonadaptive spatial filters 2	7		
	3.1		27		
			27		
		-	31		
	3.2	- ·	32		
			32		
			32		
	3.3		34		
	3.4	Deriving the minimum-norm-based filters using leakage minimization 3			

4	Ada	Adaptive spatial filters			
	4.1	Deriving weights for adaptive spatial filters	37		
		4.1.1 Minimum-variance spatial filter with the unit-gain constraint	37		
		4.1.2 Minimum-variance spatial filter with the array-gain constraint	39		
		4.1.3 Minimum-variance spatial filter with the unit-noise-gain			
		constraint	39		
	4.2	Prerequisites for the adaptive spatial-filter formulation	4 0		
		4.2.1 Uncorrelated source time courses	4 0		
		4.2.2 Low-rank signals	43		
	4.3	Scalar adaptive spatial filter: deriving the optimum source orientation	44		
	4.4		4 6		
	4.5	Vector adaptive spatial filter formulation	4 8		
		4.5.1 Unit-gain constraint spatial filter	4 8		
		4.5.2 Array-gain constraint spatial filter	4 9		
		4.5.3 Unit-noise-gain constraint spatial filter	51		
		4.5.4 Equivalence between the adaptive scalar and vector formu-			
		lations	53		
	4.6	<u> </u>	54		
	4.7	Numerical examples	57		
	_				
5		, •	65		
	5.1	1 1 1	65		
			65		
		1	66		
			67		
		0	67		
			68		
		· .	68		
		v	69		
			69		
	5.2		70		
	5.3	•	71		
	5.4	·	72		
	5.5	Numerical examples	74		
e	04	anut CND and amount in the	o o		
6	6.1	utput SNR and array mismatch 1 Output SINR			
		•			
		• •	85		
	6.3		87		
	6.4	Two types of SNR definitions for the vector minimum-variance spatial filter	ഉറ		
	6 5		89 02		
	6.5	· ·	$\frac{92}{2}$		
	6.6		93 05		
	6.7		95		
	6.8	Eigenspace-projection spatial filter	97		

		6.8.1 Eigenspace projection	97
		6.8.2 Extension to vector spatial-filter formulation	101
	6.9	Numerical examples	103
7	Effe	ects of low-rank interference	109
	7.1	Influence of low-rank interference	109
		7.1.1 Low-rank interference	109
		7.1.2 Analysis when R_d is a rank-one matrix	111
		7.1.3 Analysis when R_d is a rank-two matrix	113
	7.2	Influence on output of the unit-noise-gain minimum-variance filter	114
	7.3	Effects on the output of the eigenspace-projected spatial filter	115
	7.4	Numerical examples	116
8	Effe	ects of high-rank interference	125
	8.1	Influence of background brain activity	125
		8.1.1 Point-spread function under background interference	125
		8.1.2 Numerical examples	127
	8.2	Prewhitening eigenspace-projection spatial filter	129
		8.2.1 Prewhitening signal covariance estimation	129
		8.2.2 Prewhitening eigenspace-projection spatial filter	132
	8.3	Overestimation of signal-subspace dimensionality	133
	8.4	Reconstruction of induced activity	135
		8.4.1 General background	135
		8.4.2 Prewhitening method	136
	8.5	Numerical examples	138
9	Effe	ects of source correlation	145
	9.1	Performance of adaptive spatial filters in the presence of correlated	
		sources	145
	9.2	Signal cancellation and estimation of source correlation	147
	9.3	Suppression of coherent interferences using the LCMV spatial filter	149
		9.3.1 Weight-vector derivation	149
		9.3.2 Extension to eigenspace-projected spatial filter	151
	9.4	Imaging magnitude source coherence	152
	9.5	Numerical examples	155
10	Effe	cts of using the sample covariance matrix	163
	10.1	Sample covariance matrix: the maximum-likelihood estimate of the	
		true covariance matrix	163
	10.2	Effects of using sample covariance matrices on the minimum-	
		variance filters	164
		Recovering from the sample covariance effects: Beamspace processing	-
	10.4	Numerical examples	168
		10.4.1 Effects of using sample covariance matrices	168
		10.4.2 Recovering from the sample covariance effects	168

		10.4.3	Effects of using sample covariance matrices on unit-noise-gain minimum-variance filter	169
11	Stat	istical	evaluation of the spatial filter output	179
	11.1	Proble	em with Gaussian-distribution-based methods	179
	11.2	Evalua	ation of statistical significance using nonparametric statistics	180
			Voxel-by-voxel statistical significance test	180
		11.2.2	Multiple comparisons using maximum statistics	181
		11.2.3	Modification for power image	182
		11.2.4	Multiple comparisons using the false discovery rate	183
	11.3		ng a voxel-wise empirical null distribution	185
		11.3.1	Method when the signal is time-locked and the interference	
			is non-time-locked to the stimulus $\dots \dots \dots \dots$.	185
		11.3.2	Method when both the signal and the interference are non-	
			time-locked to the stimulus	186
		-	arametric method using reconstructed voxel time courses	187
	11.5	Numer	rical examples	188
12	Met	hods r	related to adaptive spatial filters	193
	12.1	Wiene	r filter	193
			Minimum-mean-squared-error criterion	193
			Derivation of the minimum-variance spatial filter	195
	12.2		C algorithm	196
			Single- and multi-dipole search	196
			Making use of the noise subspace—the MUSIC algorithm	197
	12.3		ing with the generalized-likelihood-ratio test function	198
			Data model	199
			Deriving the scanning function	200
		12.3.3	Numerical examples	203
13	App	endice	es	205
			num-likelihood estimation of noise and signal subspaces	205
	13.2		onal topics related to non-adaptive spatial filters	207
		13.2.1	Determination of the optimum orientation for scalar non-	
			adaptive spatial filters	207
		13.2.2	Equivalence between the vector and scalar minimum-norm	
			filters	208
			gh-Ritz formula	209
		4 Supplementary formulae when only one or two sources exist		211
	13.5	5 Robustness of the prewhitening signal covariance estimation to the		
	10.0		l-only-sources scenario	214
			tion of GLRT scanning function in Eq. (12.45)	217
	13.7		ctromagnetic forward modeling	220
			Quasi-static Maxwell's equations	221
		13.7.2	Magnetic field in an infinite homogeneous conductor	221

13.7.3	Electric potential in an infinite homogeneous conductor	223	
13.7.4	Formulae in a bounded conductor with piecewise-constant		
	conductivity	223	
13.7.5	Magnetic field from a homogeneous spherical conductor $$. $$	224	
13.7.6	Magnetic field from a realistically-shaped conductor	226	
13.7.7	Electric potential for a multiple-shell conductor	231	
Bibliography			
Index			