

Hiroshi Imai Masahito Hayashi (Eds.)

Quantum Computation and Information

From Theory to Experiment

With 49 Figures

 Springer

Contents

Part I Quantum Computation

Quantum Identification of Boolean Oracles

Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, Shigeru Yamashita	3
1 Introduction	3
2 Formalization	5
3 General Upper Bounds	8
4 Relation With Learning Theory	11
5 Tight Upper Bounds for Small M	12
6 Classical Lower and Upper Bounds	14
7 Concluding Remarks	15
References	16
Index	18

Query Complexity of Quantum Biased Oracles

Kazuo Iwama, Rudy Raymond, Shigeru Yamashita	19
1 Introduction	19
2 Goldreich-Levin Problem and Biased Oracles	21
2.1 The Model of Quantum Biased Oracles	26
3 Upper Bounds of the Query Complexity of Biased Oracles With Special Conditions	27
3.1 Basic Tools for Quantum Computation	27
3.2 Quantum Biased Oracles With the Same Bias Factor	28
3.3 Quantum Biased Oracles With Resettable Condition	33
4 Lower Bounds of the Query Complexity of Biased Oracles	34
5 Concluding Remarks	39
References	40
Index	42

Part II Quantum Information

Quantum Statistical Inference

Masahito Hayashi	45
----------------------------	----

1	Introduction	45
2	Quantum State Estimation	47
2.1	State Estimation in Pure State Family	47
2.2	State Estimation for Covariant Pure States Family	48
2.3	State Estimation in Gaussian States Family	49
2.4	State Estimation in Nonregular Family	51
2.5	Estimation of Eigenvalue of Density Matrix in Qubit System	52
3	Estimation of SU(2) Action With Entanglement	52
3.1	One-Parameter Case	53
3.2	Three-Parameter Case	53
4	Hypothesis Testing and Discrimination	54
4.1	Hypothesis Testing of Entangled State	54
4.2	Distinguishability and Indistinguishability by LOCC	55
4.3	Application of Quantum Hypothesis Testing	55
5	Experimental Application of Quantum Statistical Inference	56
5.1	State Estimation in the Two-Qubit System	57
5.2	Testing of Entangled State in the SPDC System	57
6	Analysis on Quantum Measurement	58
6.1	Quantum Measurement With Negligible State Demolition	58
6.2	Quantum Universal Compression	58
References		59
Index		61

Quantum Cloning Machines

Heng Fan	63	
1	Introduction	63
2	Bužek and Hillery Universal Quantum Cloning Machine	63
3	N to M UQCM (Gisin and Massar)	65
4	Universal Quantum Cloning Machine for General d-Dimensional System, Werner Cloning Machine	65
5	A UQCM for d-Dimensional Quantum State Proposed by Fan et al.	66
6	Further Results About the UQCM	67
6.1	UQCM for 2-Level System	68
6.2	UQCM for d-Level System	71
7	UQCM Realized in Real Physical Systems	74
8	UQCM for Identical Mixed States	79
8.1	A 2 to 3 Universal Quantum Cloning for Mixed States	79
8.2	General 2 to M ($M > 2$) UQCM	81
9	Phase-Covariant Quantum Cloning Machine	81
10	Transformation	82
11	Hilbert-Schmidt Norm	84
12	Bures Fidelity	88
13	Quantum Cloning for $x - y$ Equatorial Qubits	90
14	Quantum Cloning Networks for Equatorial Qubits	91
15	Separability of Copied Qubits and Quantum Triplicators	93

15.1 Separability	93
15.2 Optimal Quantum Triplicators	94
16 Optimal 1 to M Phase-Covariant Quantum Cloning Machines	96
17 Some Known Results About Phase-Covariant Quantum Cloning Machine for Qubits and Qutrits	98
18 Phase-Covariant Cloning of Qudits	100
19 About Phase-Covariant Quantum Cloning Machines	103
20 Cerf's Asymmetric Quantum Cloning Machine	103
21 Duan and Guo Probabilistic Quantum Cloning Machine	106
22 A Brief Summary	107
References	107
Index	109

Entanglement and Quantum Error Correction

Tohya Hiroshima, Masahito Hayashi	111
1 Introduction	111
2 Entanglement Distillation	111
2.1 Background of Concentration	112
2.2 Exponents of Optimal Concentration	112
2.3 Universal Entanglement Concentration	113
2.4 Entanglement in Boson-Fock Space	114
2.5 Computation of Distillable Entanglement of a Certain Class of Bipartite Mixed States	115
3 Quantum Error Correction	116
3.1 Mathematical Formulation of Quantum Channel	117
3.2 Background of Information Theory and Coding Theory	117
3.3 Exponential Evaluation of Quantum Error Correcting Codes .	118
3.3.1 Extensions	118
3.4 Relation Between Teleportation and Entanglement Distillation	119
3.5 Application to Quantum Key Distribution	120
4 Basic Characteristics of Bipartite Entanglement	121
4.1 Concurrence Hierarchy	121
4.2 Optimal Compression Rates and Entanglement of Purification	122
4.3 Simultaneous Schmidt Decomposition and Maximally Correlated States	123
4.4 Bell-Type Inequalities Via Combinatorial Approach	123
4.5 Quantum Graph Coloring Game	124
5 SLOCC Convertibility	124
5.1 Multipartite Entanglement	124
5.2 Bipartite Entanglement in Infinite-Dimensional Space	126
6 Protocols Assisted by Multipartite Entangled State	128
6.1 Teleportation by W State	128
6.2 Remote State Preparation of Entangled State	128
References	129

Index	132
On Additivity Questions	
Keiji Matsumoto	133
1 Introduction	133
2 Additivity Questions: Definitions and Comments	134
2.1 Holevo Capacity, Output Minimum Entropy, and Maximum Output p -Norm	134
2.2 Entanglement of Formation	137
3 Linking Additivity Conjectures	138
3.1 Channel States	138
3.2 Strong Superadditivity and Additivity of Holevo Capacity	140
3.3 Equivalence Theorem by Shor, and One More New Equivalent Additivity Question	141
3.4 Group Symmetry	143
3.5 Analysis of Examples	146
3.5.1 Example 1	146
3.5.2 Example 2	147
3.5.3 Example 3	148
4 Additivity for Special Cases	149
4.1 Additivity of WH Channel	149
5 Numerical Studies on Additivity Questions	153
5.1 A Qubit Channel That Requires Four Input States	153
5.1.1 Some Useful Facts	153
5.1.2 Setup	154
5.1.3 Heuristic Construction of a Four-State Channel	154
5.1.4 Approximation Algorithm to Compute the Holevo Capacity	155
5.1.5 Numerical Verification of Four-State Channel	156
5.1.6 Numerical Check of Additivity	157
5.2 Strong Superadditivity of EoF of Pure States	159
References	161
Index	164

Part III Quantum Security

Quantum Computational Cryptography	
Akinori Kawachi, Takeshi Koshiya	167
1 Introduction	167
2 Quantum One-Wayness of Permutations	168
2.1 Notations and Basic Operators	170
2.2 Worst-Case Characterization	170
2.3 Average-Case Characterization	171
2.4 Universal Tests	175

3	Quantum Public-Key Cryptosystem	176
3.1	Cryptographic Properties of QSCD [^]	177
3.2	Trapdoor Property	178
3.3	Reduction From the Worst Case to the Average Case	178
3.4	Hardness of QSCD [^]	179
3.5	Construction	180
3.6	Remarks	182
	References	182
	Index	184

Quantum Key Distribution: Security, Feasibility and Robustness

Xiang-Bin Wang	185	
1	Introduction	185
2	Security Proof of BB84 QKD With Perfect Single-Photon Source	187
2.1	Hashing and Error-Correction in Classical Communication	188
2.2	The Main Idea of Entanglement Purification	190
2.3	Error Test	192
2.4	Entanglement Purification by Hashing	192
2.4.1	Bit-Flip Error Correction	193
2.4.2	Phase-Flip Error Correction	194
2.5	Classicalization	195
3	Secure Key Distillation With a Known Fraction of Tagged Bits	196
3.1	Final Key Distillation With a Fraction of Tagged Bits	196
3.2	PNS Attack	198
4	The Decoy-State Method	200
4.1	The Main Ideas and Results	201
4.2	The Issue of Unconditional Security	206
4.3	Robustness Analysis	206
4.4	Final Key Rate and Further Studies	209
4.5	Summary	210
5	QKD With Asymmetric Channel Noise	210
5.1	Channel Error, Tested Error and Key-Bits Error	211
5.2	QKD With One-Way Classical Communication	212
5.3	Six-State Protocol With Two-Way Classical Communications	214
6	Quantum Key Distribution With Encoded BB84 States	217
6.1	A Protocol For Collective Channel Noise	219
6.1.1	Protocol 1 and Security Proof	220
6.1.2	Protocol 2	221
6.1.3	Physical Realization	223
6.1.4	Another Protocol For Robust QKD With Swinging Objects	223
6.1.5	Summary and Discussion	224
6.2	A Protocol With Independent Noise	225
6.2.1	The Method and the Main Idea	225

6.2.2	The QPFER Code	226
6.2.3	The Protocol and Its Linear Optical Realization	227
6.2.4	Security Proof	230
6.2.5	Subtlety of the "Conditional Advantage"	230
7	Summary and Concluding Remarks	231
	References	231
	Index	233

Why Quantum Steganography Can Be Stronger Than Classical Steganography

Shin Natori	235	
1	Introduction	235
2	Definitions	235
2.1	General Model of Steganography System	235
2.2	Classical Model of Steganography System	237
3	Related Works	237
4	Quantum Steganography	237
4.1	Model of Quantum Steganography System	237
4.2	Comparison Between Classical and Quantum Steganography	238
5	Conclusions and Future Work	240
	References	240
	Index	240

Part IV Realization of Quantum Information System

Photonic Realization of Quantum Information Systems

Akihisa Tomita, Bao-Sen Shi	243	
1	Introduction	243
2	Cryptography	244
2.1	High-Sensitivity Photon Detector	245
2.1.1	Requirement for Single-Photon Detectors	245
2.1.2	Improved Single-Photon Detector for Fiber Transmission	246
2.2	Single-Photon Transmission Over 150 km in a Unidirectional System With Integrated Interferometers	248
2.3	Refinements Toward a Practical QKD System	251
2.3.1	Temperature-Insensitive Interferometer	251
2.3.2	High-Speed Operation	253
3	Quantum Computation	256
3.1	Measured Quantum Fourier Transform	256
3.1.1	Implementation and Experimental Results	256
3.1.2	Effects of Imperfection	258
3.1.3	Validity of Majority Voting	260
3.1.4	Toward Quantum Computers	262
3.2	Control-Unitary Gates	263

3.2.1 Solid-State Bell State Measurement Devices by Two-Photon Absorption	264
4 Generation of Entangled Photon Pairs by SPDC	265
4.1 SPDC With Two-Crystal Geometry	266
4.2 Interferometric Generation of Entangled Photon Pairs	269
4.3 A New Material for SPDC: Periodically Poled KTP	270
5 Conclusion	272
References	273
Index	275
Index	277