## **Table of Contents**

| . Intro | duction    | 1                                                              | 1  |
|---------|------------|----------------------------------------------------------------|----|
| l. Fund | amenta     | als                                                            | 7  |
| 1. Pla  | isma osc   | sillation and Mie's theory                                     | 9  |
| 1.1     | Principle  | es of plasma oscillation [20]                                  | 10 |
| 1.2     | Scatteri   | ng and absorption of small particles [23]                      | 12 |
| 2. L(+  | ·)-ascorb  | oic acid and its derivates                                     | 15 |
| 2.1     |            | al properties of ascorbic acid                                 |    |
|         |            | rfactants and their aggregates [28]                            |    |
|         |            | nation of gel and coagel                                       |    |
|         |            |                                                                |    |
|         |            | d its different structures and species                         |    |
|         |            | chloride in aqueous solutions                                  |    |
| 3.2     |            | es of zirconium oxide                                          |    |
| 3.2     | .1 Cry     | stal structures and martensic phase transformation             | 27 |
| 3.2     | .2 Tet     | ragonal zirconia and critical crystal size                     | 34 |
| 4. Str  | uctural ir | nvestigation techniques                                        | 37 |
| 4.1     | X-ray ba   | ased methods                                                   | 37 |
| 4.1     | .1 The     | e nature of X-rays [48]                                        | 37 |
| 4.1     | .2 Sm      | all angle X-ray scattering (SAXS)                              | 41 |
| 4       | 1.1.2.1    | Scattering by one electron                                     | 42 |
| 4       | 1.1.2.2    | The scattering vector [54]                                     | 42 |
| 4       | 1.1.2.3    | The electron density [55]                                      | 44 |
| 4       | 1.1.2.4    | The scattering intensity [58]                                  | 45 |
| 4       | .1.2.5     | The auto correlation and invariant [58]                        | 46 |
| 4       | 1.1.2.6    | Scattering of spherical particles [58]                         | 47 |
| 4       | .1.2.7     | The Guinier approximation [58]                                 | 48 |
| 4       | .1.2.8     | Correlation length and Porod's law of scattering [58]          | 49 |
| 4       | .1.2.9     | Scattering of particles with non-uniform electron density [58] | 50 |
| 4.1     | .3 X-ra    | ay diffraction (XRD)                                           | 52 |



|          | 4.1.3.1 Phase shift and intensity [65]                                     | .53 |
|----------|----------------------------------------------------------------------------|-----|
|          | 4.1.3.2 Bragg's Law of diffraction [65], [67]                              | .55 |
|          | 4.1.3.3 The reciprocal lattice and the system of Miller indices [64], [65] | .57 |
|          | 4.1.3.4 The Scherrer equation [68]                                         | .60 |
| 4.2      | Electron based method: scanning electron microscopy (SEM)                  | .62 |
| 4.       | 2.1 Principal setup [72]                                                   |     |
| 4.       | 2.2 The scanning process [73]                                              | .64 |
| III. Exp | erimental                                                                  | 65  |
| 5. C     | hemicals                                                                   | .67 |
| 5.1      | Preparation of Gold Nanoparticles                                          | .67 |
| 5.2      | Preparation of zirconium-based nanoparticles                               | .67 |
| 6. A     | nalytical Methods                                                          | .68 |
| 6.1      | Thermogravimetric analysis (TGA)                                           | .68 |
| 6.2      | Differential scanning calorimetry (DSC)                                    | .68 |
| 6.3      | Bright field and phase contrast microscopy                                 | .69 |
| 6.4      | UV/Vis absorption                                                          | .70 |
| 6.5      | Raman measurements                                                         | .71 |
| 6.6      | Small angle X-ray scattering (SAXS)                                        | .72 |
| 6.7      | X-ray diffraction (XRD)                                                    | .73 |
| 6.8      | Scanning electron microscopy (SEM)                                         | .74 |
| 7. Sy    | nthesis of L(+)ascorbyl stearate (Asc18)                                   | .75 |
| 8. Sy    | nthesis of Gold Nanoparticles                                              | .77 |
| 8.1      | Preparation with Asc18 surfactant                                          | 77  |
| 8.2      | Preparation with Asc12 surfactant                                          | 78  |
| 8.3      | Preparation with Asc14 Asc10 and Asc8 surfactants                          | 79  |
| 9. Pr    | eparation of ZrO <sub>2</sub> - nanoparticles                              | 80  |
| 9.1      | Synthesis of zirconium hydroxide by coprecipitation in homogeneous         |     |
|          | phase (sol)                                                                | 80  |
| 9.2      | Preparation of hydrous zirconia gel                                        | 80  |

| IV.Results and Discussion                                           | 83  |
|---------------------------------------------------------------------|-----|
| 10. Gold nanoparticles                                              | 85  |
| 10.1 Determination of the cmt of Asc18                              | 85  |
| 10.2 Synthesized nanoparticles and their colors                     | 86  |
| 10.2.1 Influence of reaction temperature                            |     |
| 10.2.2 Comparison of different concentrations                       | 88  |
| 10.3 UV-Vis characterization                                        | 90  |
| 10.3.1 Comparison of different concentrations                       | 90  |
| 10.3.2 Comparison of different reaction temperatures                | 93  |
| 10.3.2.1 Asc10                                                      | 94  |
| 10.3.2.2 Asc12                                                      | 95  |
| 10.3.2.3 Asc14                                                      | 97  |
| 10.3.2.4 Asc18                                                      | 98  |
| 10.4 SAXS characterization                                          | 101 |
| 10.4.1 The Schulz Spheres fitting model [79]                        | 101 |
| 10.4.2 Comparison of reactions above and below the cmc              | 102 |
| 10.4.3 Comparison of different reaction temperatures                | 103 |
| 10.4.4 Comparison of AscX surfactants with different chain lengths  | 106 |
| 10.4.4.1 Asc12                                                      | 106 |
| 10.4.4.2 Asc14                                                      | 109 |
| 10.4.4.3 Asac18                                                     | 111 |
| 10.5 Conclusion                                                     | 113 |
| 11. 3. Zirconium hydroxide and oxide nanoparticles                  | 115 |
| 11.1 Raman characterization                                         | 115 |
| 11.2 Dialysis of the sol and an aqueous ZrOCl <sub>2</sub> solution | 117 |
| 11.2.1 Conductivity of the sol and ZrOCl <sub>2</sub> solution      |     |
| 11.2.2 Progress of pH and conductivity during gel-formation         | 117 |
| 11.3 Characterization with microscopic methods                      | 119 |
| 11.3.1 LM-micrographs of untreated gel                              |     |
| 11.3.2 LM-micrographs of squeezed gel                               |     |
| 11.3.3 LM-micrographs of air-dried gel                              |     |

| 11.3.4 LM-micrographs of collapsed gel                | 122 |
|-------------------------------------------------------|-----|
| 11.3.5 LM-micrographs of a freeze-dried gel           | 123 |
| 11.4 DSC measurements of the gel                      | 124 |
| 11.5 Characterization by SEM                          | 127 |
| 11.6 SAXS characterization of the gel                 | 130 |
| 11.6.1 The unified fit model [80]-[82]                | 130 |
| 11.6.2 Structural parameters of the gel               | 132 |
| 11.7 TGA and DTG measurements                         | 135 |
| 11.8 XRD characterization of calcined samples         | 139 |
| 11.8.1 Diffractogram of the gel-synthesized particles | 139 |
| 11.8.2 Diffractogram of the sol-synthesized particles | 140 |
| 11.8.2.1 Samples containing NaCI                      | 141 |
| 11.8.2.2 Samples without NaCl                         | 143 |
| 11.9 Conclusion                                       | 144 |
| V. Annex                                              | 147 |
| List of Figures                                       | 149 |
| List of Tables                                        | 152 |
| Bibliography                                          | 152 |