Contents

		ord	XI
	rof. J	ohn L. Hennessy (Stanford University, California, USA) and David A. Patterson (University of California at Berkeley, USA)	
	-	e	XIII
n	trod	uction	1
>/	ART I	– An Inflection Point for Enterprise Applications	5
1	Des	irability, Feasibility, Viability – The Impact of In-Memory	7
		Information in Real Time – Anything, Anytime, Anywhere	7
		1.1.1 Response Time at the Speed of Thought	9
		1.1.2 Real-Time Analytics and Computation on the Fly	10
	1.2	The Impact of Recent Hardware Trends	11
		1.2.1 Database Management Systems for Enterprise Applications	11
		1.2.2 Main Memory Is the New Disk	14
		1.2.3 From Maximizing CPU Speed to Multi-Core Processors	15
		1.2.4 Increased Bandwidth between CPU and Main Memory	17
	1.3	Reducing Cost through In-Memory Data Management	20
		1.3.1 Total Cost of Ownership	20
		1.3.2 Cost Factors in Enterprise Systems	21
		1.3.3 In-Memory Performance Boosts Cost Reduction	22
	1.4	Conclusion	23
2		y Are Enterprise Applications So Diverse?	25
	2.1	Current Enterprise Applications	25
	2.2	Examples of Enterprise Applications	27
	2.3	Enterprise Application Architecture	29
	2.4	Data Processing in Enterprise Applications	30
	2.5	Data Access Patterns in Enterprise Applications	31
	2.6	Conclusion	31

XVI Contents

3	Sans	ssouciDB – Blueprint for an In-Memory Enterprise Database System	33
	3.1	Targeting Multi-Core and Main Memory	34
	3.2	Designing an In-Memory Database System	36
	3.3	Organizing and Accessing Data in Main Memory	37
	3.4	Conclusion	40
P/	ART I	I – SanssouciDB – A Single Source of Truth through In-Memory	41
4		Technical Foundations of SanssouciDB	43
	4.1	Understanding Memory Hierarchies	43
		4.1.1 Introduction to Main Memory	44
		4.1.2 Organization of the Memory Hierarchy	47
		4.1.3 Trends in Memory Hierarchies	49
		4.1.4 Memory from a Programmer's Point of View	50
	4.2	Parallel Data Processing Using Multi-Core and Across Servers	57
		4.2.1 Increasing Capacity by Adding Resources	57
		4.2.2 Parallel System Architectures	59
		4.2.3 Parallelization in Databases for Enterprise Applications	61
		4.2.4 Parallel Data Processing in SanssouciDB	64
	4.3	Compression for Speed and Memory Consumption	68
		4.3.1 Light-Weight Compression	69
		4.3.2 Heavy-Weight Compression	73
		4.3.3 Data-Dependent Optimization	73
		4.3.4 Compression-Aware Query Execution	73
		4.3.5 Compression Analysis on Real Data	74
	4.4	Column, Row, Hybrid – Optimizing the Data Layout	75
		4.4.1 Vertical Partitioning	75
		4.4.2 Finding the Best Layout	78
		4.4.3 Challenges for Hybrid Databases	81
	4.5	The Impact of Virtualization	81
		4.5.1 Virtualizing Analytical Workloads	82
		4.5.2 Data Model and Benchmarking Environment	82
		4.5.3 Virtual versus Native Execution	83
		4.5.4 Response Time Degradation with Concurrent VMs	84
	4.6	Conclusion	86
5	Org	anizing and Accessing Data in SanssouciDB	89
	5.1	SQL for Accessing In-Memory Data	90
		5.1.1 The Role of SQL	90
		5.1.2 The Lifecycle of a Query	91
		5.1.3 Stored Procedures	91
		5.1.4 Data Organization and Indices	91
	5.2	Increasing Performance with Data Aging	92
		5.2.1 Active and Passive Data	93

Contents XVII

			Implementation Considerations for an Aging Process	95
		5.2.3	The Use Case for Horizontal Partitioning of Leads	95
	5.3	Effici	ent Retrieval of Business Objects	98
			Retrieving Business Data from a Database	98
		5.3.2	Object Data Guide	99
	5.4	Handl	ling Data Changes in Read-Optimized Databases	100
		5.4.1	The Impact on SanssouciDB	101
		5.4.2	The Merge Process	103
			Improving Performance with Single Column Merge	107
	5.5	Apper	nd, Never Delete, to Keep the History Complete	109
		5.5.1	Insert-Only Implementation Strategies	110
		5.5.2	Minimizing Locking through Insert-Only	111
			The Impact on Enterprise Applications	114
		5.5.4	Feasibility of the Insert-Only Approach	117
	5.6	Enabl	ing Analytics on Transactional Data	118
		5.6.1	Aggregation on the Fly	119
		5.6.2	Analytical Queries without a Star Schema	128
	5.7	Exten	ding Data Layout without Downtime	135
		5.7.1	Reorganization in a Row Store	135
			On-The-Fly Addition in a Column Store	136
	5.8	Busin	ess Resilience through Advanced Logging Techniques	137
		5.8.1	Recovery in Column Stores	138
			Differential Logging for Row-Oriented Databases	140
			Providing High Availability	141
	5.9	The In	mportance of Optimal Scheduling for Mixed Workloads	142
		5.9.1		142
			Characteristics of a Mixed Workload	145
			Scheduling Short and Long Running Tasks	146
	5.10	Concl	usion	148
P/	ART I	II – Ho	w In-Memory Changes the Game	151
	_			
6			on Development	153
	6.1		nizing Application Development for SanssouciDB	153
			Application Architecture	154
			Moving Business Logic into the Database	155
			Best Practices	157
	6.2		ative Enterprise Applications	158
		6.2.1	New Analytical Applications	158
		6.2.2	Operational Processing to Simplify Daily Business	162
			Information at Your Fingertips with Innovative User-Interfaces .	164
	6.3	Concl	usion	169

XVIII Contents

7	Fina	ally, a Real Business Intelligence System Is at Hand	171
	7.1		171
		7.1.1 Yesterday's Business Intelligence	171
		7.1.2 Today's Business Intelligence	174
		7.1.3 Drawbacks of Separating Analytics from Daily Operations	176
		7.1.4 Dedicated Database Designs for Analytical Systems	178
		7.1.5 Analytics and Query Languages	180
		7.1.6 Enablers for Changing Business Intelligence	182
		7.1.7 Tomorrow's Business Intelligence	183
	7.2	How to Evaluate Databases after the Game Has Changed	185
		7.2.1 Benchmarks in Enterprise Computing	185
		7.2.2 Changed Benchmark Requirements for a Mixed Workload	187
		7.2.3 A New Benchmark for Daily Operations and Analytics	188
	7.3	Conclusion	192
8	Sca	ling SanssouciDB in the Cloud	193
	8.1	What Is Cloud Computing?	194
	8.2	Types of Cloud Applications	195
	8.3		197
		8.3.1 Multi-Tenancy	197
		8.3.2 Low-End versus High-End Hardware	201
		8.3.3 Replication	201
		8.3.4 Energy Efficiency by Employing In-Memory Technology	202
	8.4	Conclusion.	204
9	The	In-Memory Revolution Has Begun	205
	9.1	Risk-Free Transition to In-Memory Data Management	205
		9.1.1 Operating In-Memory and Traditional Systems Side by Side	206
		9.1.2 System Consolidation and Extensibility	207
	9.2	Customer Proof Points	208
	9.3	Conclusion	209
Re	efere	nces	211
Αŀ	oout	the Authors	221
Gl	ossa	ry	223
Αł	bre	viations	231
In	dex .		233