Contents

Foreword	ν	
----------	---	--

Image	credits	X	
--------------	---------	---	--

1	Introduction to Biosignal Processing —— 1
2	Fundamentals of Information, Signal and System Theory —— 5
2.1	Information and Information Transmission —— 5
2.2	Connection between Signals and Systems —— 15
2.3	Definition and Classification of Signals —— 18
2.3.1	Univariate and Multivariate Signals —— 18
2.3.2	Periodic, Quasi-Periodic, Aperiodic and Transient Signals —— 19
2.3.3	Even and Odd Signals —— 26
2.3.4	Causal and Acausal Signals —— 27
2.3.5	Energy and Power Signals —— 27
2.3.6	Deterministic and Stochastic Signals —— 29
2.3.7	Continuous and Discrete Signals —— 33
2.4	Signal Processing Transformations —— 34
2.4.1	Continuous Fourier-Transformation —— 35
2.4.2	Continuous Laplace Transform —— 38
2.4.3	Continuous Short-Time Fourier-Transform and Wavelet Transform —— 40
2.4.4	Continuous Linear Convolution —— 44
2.5	Biosignal Processing and the Derivation of
	Diagnostic Information —— 45
2.6	Post-Reading and Exercises —— 46
3	Fundamentals of the Formation of Biosignals —— 51
3.1	Physiology and Electrical Activity of Muscle and Nerve Cells —— 53
3.1.1	Formation and Function of Biomembranes —— 54
3.1.2	Analogy to Electrical Circuits —— 57
3.1.3	Emergence and Propagation of Action Potentials —— 59
3.2	Electrophysiology of the Heart —— 64
3.2.1	General Excitation of Muscle Cells —— 65
3.2.2	Measurement of Electrical Potentials at the Body Surface —— 67
3.2.3	Process of Excitation Propagation during a Heart Beat —— 73
3.2.4	Modelling the Excitation System —— 75
3.3	Taxonomy of Biosignals —— 82
3.4	Post-Reading and Exercises — 87

4	Measurement of Biosignals and Analog Signal Processing —— 91
4.1	Measurement of Electrical Biosignals —— 91
4.1.1	Electrodes — 93
4.1.2	Electrical Amplifier —— 97
4.2	Signal Interference —— 104
4.2.1	Network Disturbances —— 104
4.2.2	Transient Disturbances —— 109
4.2.3	High-Frequency Interference due to Electromagnetic Radiation —— 109
4.3	Transducer for Non-Electrical Biosignals —— 110
4.3.1	Sound Transducer —— 110
4.3.2	Optical Sensors for Plethysmography and Determination of Oxygen
	Saturation —— 113
4.4	Interference Suppression and Analog Filtering —— 115
4.5	Design of Analogue Filters —— 123
4.5.1	Selective Filters to Optimise the Magnitude Frequency Response —— 123
4.5.2	Selective filters with Group Delay Optimisation —— 143
4.6	Post-Reading and Exercises —— 144
5	Methods for Discrete Processing and Analysis of Biosignals —— 149
5.1	Discretisation of Continuous Signals —— 149
5.2	Discrete Transformations of Signal Processing —— 154
5.2.1	The Discrete-Time Fourier Transform —— 154
5.2.2	The Discrete Fourier Transform (DFT) —— 155
5.2.3	Discrete Laplace Transform and z-Transform —— 158
5.3	Methods for Analysis and Processing of Discrete Biosignals —— 159
5.3.1	Time Domain Signal Analysis and Matching —— 159
5.3.2	Signal Analysis in the Frequency Domain —— 175
5.3.3	Signal Analysis in the Time-Frequency Domain —— 183
5.3.4	Discrete Linear Time-Invariant Systems and Digital Filters —— 190
5.4	Post-Reading and Exercises —— 208
6	Applications and Methods in Biosignal Processing —— 213
6.1	Signals of the Brain —— 213
6.2	Signals of the Muscles and Motions —— 220
6.2.1	Spectral Analysis of the One-Channel EMG —— 222
6.2.2	Acoustic-Kinetic Analysis of Osteoarthrosis Patients —— 224
6.3	Signals of the Cardiovascular System —— 241
6.3.1	Electrocardiogram —— 241
6.3.2	Phonocardiogram —— 265
6.3.3	Determination of Oxygen Saturation and
	Photoplethysmography —— 272
634	Signal Classification of Multichannel Photonlethysmography —— 277

6.4 Post-Reading and Exercises — 285

7 Appendix: Quantity- / Unit Symbols and Important Constants — 289

Bibliography —— 295

Index —— 299